
Chapter 2

Fourier Series and Integrals

Having contested the various results [Biot and Poisson] now recognise
that they are exact but they protest that they have invented another
method of expounding them and that this method is excellent and the
true one. If they had illuminated this branch of physics by important
and general views and had greatly perfected the analysis of partial
differential equations, if they had established a principal element of
the theory of heat by fine experiments . . . they would have the right to
judge my work and to correct it. I would submit with much pleasure
. . . But one does not extend the bounds of science by presenting, in
a form said to be different, results which one has not found oneself
and, above all, by forestalling the true author in publication.

Joseph Fourier, from John Herivel, Joseph Fourier: The Man
and the Physicist, 1992

It is often useful to decompose a given function into components, analyze them,
and then reassemble the function again, possibly in a different way. One classical
and mathematically very interesting method is to use trigonometric functions.
This is the basis for the theory of Fourier analysis.

One can think of a sound (a certain tone played on the violin, say) as con-
sisting of countably many oscillations with different discrete frequencies, which
together define the pitch and the specific timbre of the tone. These component
frequencies can be identified via Fourier analysis, in particular by computing
the Fourier series of a periodic function. Of course, in reality no oscillation is
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78 CHAPTER 2. FOURIER SERIES AND INTEGRALS

precisely periodic, and a sound will consist of a continuum of frequencies. Math-
ematically, this is analyzed by taking the continuous Fourier transform. Thus,
the Fourier transform arises from Fourier series by taking more and more fre-
quencies into account, a process described by the Poisson summation formula.
Finally, the question arises as to whether a function thus analyzed can be recon-
structed from its Fourier series. It turns out that even for a continuous function,
the Fourier series may not be everywhere convergent. Thus one is led to consider
special summation methods, or “kernels.”

These are among the topics covered in the next few sections. The interested
reader can find more details than we have room to give here in Chapter 8 of
Stromberg’s book [203], in the classical treatment available in Zygmund [217],
or in the more modern books by Katznelson [149] and Butzer-Nessel [75].

One reason for studying Fourier methods is that they are very useful for
evaluation of sums and integrals. Once such an object is identified as a Fourier
series or integral, that knowledge can be used for the evaluation, or methods
such as the Parseval equation or Poisson summation can be brought to bear.
We will see numerous examples of this in the present chapter and elsewhere in
the book.

2.1 The Development of Fourier Analysis

We start with some historical background here, which we have adapted in part
from the MacTutor web site at http://www-gap.dcs.st-and.ac.uk/˜history, and
also from R. Bhatia’s monograph on Fourier series [25].

Joseph Fourier was one of the more colorful figures of mathematical his-
tory. Originally intending to be a Catholic priest, Fourier declined to take his
vows when he realized that he could not extinguish his interest in mathemat-
ics. Shortly afterwards, he became involved in the movement that led to the
French Revolution in 1793, but, fortunately for modern mathematics, he was
spared the guillotine, and was able to study mathematics at the Ecole Normale
in Paris under the tutelage of Lagrange. A few years later, he was appointed as
a scientific adviser for Napoleon’s expedition to Egypt. When Napoleon’s army
was defeated by Nelson at the battle of the Nile, Fourier and the other French
advisers insisted that they be able to retain some of the artifacts they had found
there. The British refused, but at least permitted the French to make a catalog
of what they felt were the more important items. Fourier was given this task
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by the French commanders. The eighth item of his catalog was the Rosetta
stone, which had been recognized by the French scientists on the expedition as
a possible key to understanding the Egyptian language. Later in Europe, when
published copies of the inscriptions were made available, Champollion, a student
who had been inspired by Fourier himself to study Egyptology, succeeded in the
first translation.

Fourier’s principal contributions to mathematics, namely Fourier analysis
and Fourier series, paralleled and even stimulated the development of the en-
tire field of real analysis. Fourier analysis had its origin in the 1700s, when
d’Alembert derived the wave equation that describes the motion of a vibrating
string, starting with an initial “function,” which at the time was restricted to
an analytic expression. In 1755, Daniel Bernoulli gave another solution for the
problem in terms of standing waves, namely waves associated with the n + 1
points 0, 1/n, 2/n, · · · , (n− 1)/n, 1 on the string that remain fixed. The motion
for n = 1, 2, · · · is the first harmonic, the second harmonic, and so on. Bernoulli
asserted that every solution to the problem of the plucked string is merely a sum
of these harmonics.

Beginning in 1804, Joseph Fourier began to analyze the conduction of heat
in solids. He not only discovered the basic equations governing heat conduction,
but he developed methods to solve them, and, in the process, developed and
extended Fourier analysis to a much broader range of scientific problems. He
described this work in his book The Analytical Theory of Heat, which is regarded
as one of the most important books in the history of physics.

Like Bernoulli, Fourier asserted that any continuous function can be written
as

f(x) =
∞∑

n=−∞
An eint. (2.1.1)

But Fourier claimed that his representation is valid not only for f given by a
single analytical formula, but for f given by any graph, which at the time was
a more general object, encompassing, for example, a piecewise combination of
different analytic expressions. Fourier was not able prove his assertions, at least
not to the satisfaction of the mathematical community at the time (and certainly
not to the standards required today). But other mathematicians were intrigued,
and they pursued these questions with renewed determination.

Dirichlet was the first to find a rigorous proof. He defined a real function
as we now understand the term, namely as a general mapping from one set of
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reals to another, thus decoupling analysis from geometry. He then was able
to prove that for every “piecewise smooth” function f , the Fourier series of f
converges to f(x) at any point x where f is continuous, and to the average value
(f(x+) + f(x−))/2 if f has a jump discontinuity at x. This was the first major
convergence result for Fourier series.

Mathematicians realized that to handle functions that have infinitely many
discontinuities, it was necessary to generalize the notion of an integral beyond
the intuitive idea of the area under a curve. Riemann succeeded in developing
a theory of integration that could handle such functions, and using this theory,
he was able to exhibit an example of a function that did not satisfy Dirichlet’s
piecewise continuous condition, yet still possessed a pointwise convergent Fourier
series. Cantor observed that changing a function f at a few points does not
change its Fourier coefficients. In the course of asking how many points can
be changed while preserving Fourier coefficients, he was led to the notion of
countably infinite and uncountably infinite sets. Ultimately, Lebesgue extended
Dirichlet’s, Riemann’s, and Cantor’s results into what we now know as measure
theory, where sets of measure zero, almost everywhere equality of functions, and
almost everywhere convergence of functions supersede the simple concepts that
prevailed in the 1700s.

In summary, it is not an exaggeration to say that all of modern real and
complex analysis has its roots in Fourier series and Fourier analysis.

2.2 Basic Theorems of Fourier Analysis

2.2.1 Fourier Series

We will consider 2π-periodic functions f : R → C. For p > 0, we write f ∈ Lp(T)
if such an f is Lebesgue measurable and satisfies

‖f‖p =

[∫ π

−π

|f(t)|p dt

]1/p

< ∞

(T stands for Torus). Note that ‖ · ‖p is not a norm on Lp, since any function f
which is 0 almost everywhere will have ‖f‖p = 0. (Later we will identify functions
which are equal a.e.) In what follows, we will be mainly interested in the spaces
L1(T) and L2(T). Note that ‖·‖1 ≤ ‖·‖2 and L2(T) ( L1(T). If f is 2π-periodic
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and continuous on R, then we write f ∈ C(T) and equip this space with the
uniform norm.

For a function f ∈ L1(T), define the n-th Fourier coefficient (n ∈ Z) by

f̂n =

∫ π

−π

f(t) e−int dt.

This is motivated by the insight that if we write

sn(t) =
1

2π

n∑

k=−n

ck eikt, (2.2.2)

for some sequence ck and assume L1(T)-convergence of (sn) to some f ∈ L1(T),

then f̂n = cn. Thus, for arbitrary f ∈ L1(T), we will write (formally and
suggestively)

f(t) ∼ 1

2π

∞∑
n=−∞

f̂n eint,

where in general no assertion about convergence of this series is implied. Any
convergence statement is to be read in the sense of symmetric limits, i.e., of

sn(f, t) =
1

2π

n∑

k=−n

f̂k eikt.

Fourier coefficients usually are complex numbers, even when f is a real-valued
function. Sometimes it is desirable to have a real-valued series for f . Then the
Fourier series can be equivalently written as

f(t) ∼ 1

2π
a0 +

1

π

∞∑
n=1

(an cos(nt) + bn sin(nt)),

where

an =

∫ π

−π

f(t) cos(nt) dt

bn =

∫ π

−π

f(t) sin(nt) dt.

Note that

sn(f, t) =
1

2π
a0 +

1

π

n∑

k=1

(ak cos(kt) + bk sin(kt)).
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Example 2.2.1 Fourier series of a symmetric function.

Define f ∈ L1(T) by f(t) = (π− t)/2 for t ∈ [0, 2π). Then f̂n = −iπ/n for n 6= 0

and f̂0 = 0, and its Fourier series is given by

f(t) ∼ −i

2

∞∑
n=−∞

n6=0

1

n
eint, (2.2.3)

or, equivalently,

f(t) ∼
∞∑

n=1

sin(nt)

n
. (2.2.4)

The right-hand side of (2.2.4) equals 0 at t = 0, while the left-hand side by
definition equals π/2. Thus, equality cannot hold pointwise here. The situation
would improve if we were to define f(0) = 0. In fact, it follows from

∞∑
n=1

zn

n
= −Ln(1− z) for |z| ≤ 1, z 6= 1, (2.2.5)

by setting z = eit and taking real and imaginary parts, that

∞∑
n=1

sin(nt)

n
=

π − t

2
and (2.2.6)

∞∑
n=1

cos(nt)

n
= − ln |2 sin(t/2)| , (2.2.7)

for all t ∈ (0, 2π), and even with uniform convergence on every closed subinterval
of (0, 2π). 2

The question now is under what condition the Fourier series of a function con-
verges to that function. The answer depends on the definition of “convergence,”
and is most interesting in the cases of pointwise, L1(T)- and L2(T)-convergence.

Pointwise and uniform convergence. As we have seen in the above example
(and as is clear from the computation of Fourier series), L1(T)-functions which
are equal a.e. will have the same Fourier series. By the uniqueness theorem for
Fourier series, the converse is also true: Functions with the same Fourier series
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are equal a.e. It is not true that the Fourier series of any continuous function
is pointwise convergent to that function. An example due to Lebesgue is given
in Item 6 at the end this chapter. Such functions must have a complicated
structure, because they cannot be of bounded variation. A function f : R → C
is of bounded variation on (a, b) if there is an M > 0 with

n−1∑

k=0

|f(tk+1)− f(tk)| ≤ M for all a < t0 < t1 < · · · < tn < b.

The infimum of all such M is the total variation of f , thus

V b
a (f) = sup

{
n−1∑

k=0

|f(tk+1)− f(tk)| : a < t0 < t1 < · · · < tn < b, n ∈ N

}
.

The set of all functions of bounded variation on (a, b) is denoted BV (a, b). An
equivalent characterization (due to Lebesgue) is that f can be written as the
difference of two bounded increasing functions. Thus, any BV -function f is
differentiable a.e., and the one-sided limits f(t+) and f(t−) exist in (a, b).

Theorem 2.2.2 (Jordan test). For f ∈ L1(T) ∩BV (a, b) we have

lim
n→∞

sn(f, t) =
f(t−) + f(t+)

2
for every t ∈ (a, b)

and uniformly on every compact subinterval of (a, b) where f is continuous. If
f ∈ C(T), then the convergence is uniform on R.

Note that this theorem is proved via Cesàro summation, and thus via the
Fejér kernel, which we will discuss in Section 2.3.3.

The Jordan test is another explanation of the convergence properties of the
Fourier series for the function f from the previous example. If another function
f ∈ C(T) is defined by f(t) = t2 on [−π, π], then

f(t) ∼ 1

3
π2 + 4

∞∑
n=1

(−1)n

n2
cos(nt).

Since f is continuous on R, the Fourier series converges uniformly to f , by the
Jordan test. However, since sn(f, t) is uniformly convergent, this also follows
directly from the uniqueness theorem for Fourier series.



84 CHAPTER 2. FOURIER SERIES AND INTEGRALS

For t = 0, we get from this the identity

∞∑
n=1

(−1)n−1

n2
=

π2

12
.

By separating even and odd parts, this proves that

ζ(2) =
∞∑

n=1

1

n2
=

π2

6
.

To conclude the section on pointwise convergence, we note that the Fourier
series of an f ∈ L1(T) may be divergent everywhere (by an example due to
Kolmogorov in 1926). If, however, f ∈ Lp(T) for p > 1, then sn(f, t) converges
to f(t) a.e., a result proved by Carleson and Hunt in 1966 [81, 143].

Convergence in L1(T). From now on it makes sense to identify functions that
are equal almost everywhere, so that ‖ · ‖1 and ‖ · ‖2 are now norms in the
respective spaces. Thus we will deal, strictly speaking, with equivalence classes
of functions instead of pointwise defined functions, although this will not be
denoted explicitly. For example, the statement that such a function is continuous
will mean that in its equivalence class we can find a continuous function, then
denoted by the same symbol. This notation is unusual but convenient, and
it corresponds to how one deals with these objects informally. It can lead to
dangerous pitfalls, though, as we will see later. In general, the Fourier series of
an f ∈ L1(T) need not be convergent to f with respect to the L1(T)-norm. Of
the many restrictions on f which imply convergence, we mention here only one
which is particularly simple (and has a convincing analog in the case of Fourier
transforms).

Theorem 2.2.3 Let f ∈ L1(T). If
∑∞

n=−∞ |f̂n| < ∞, then f ∈ C(T) and

f(t) =
1

2π

∞∑
n=−∞

f̂n eint,

with convergence in the L1(T)-norm as well as uniformly on T.

There are functions in L1(T) (even continuous ones) for which the Fourier
coefficients are not absolutely summable. It is a difficult and in general open
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problem to characterize those sequences which are Fourier sequences of an L1(T)-
function. A weak necessary condition follows from the Riemann-Lebesgue lemma
(see next subsection and Exercise 14): The Fourier coefficients of any f ∈ L1(T)

satisfy lim|n|→∞ f̂n = 0.

Convergence in L2(T). In contrast to the L1-case, for p > 1 the Fourier series of
any f ∈ Lp(T) converges to f in the Lp(T)-norm. For p = 2, this follows directly
from the usual Hilbert space theory: The trigonometric functions constitute an
orthogonal basis for L2(T). This implies that the Fourier coefficients of an
f ∈ L2(T) are square-summable and that every square-summable sequence is
the sequence of Fourier coefficients of an f ∈ L2(T). (That is the Riesz-Fischer
theorem.) Another consequence of Hilbert space theory is the Parseval equation.

Theorem 2.2.4 (Parseval’s formula). For any f, g ∈ L2(T), the identity

1

2π

∞∑
n=−∞

f̂n ĝn =

∫ π

−π

f(t) g(t) dt (2.2.8)

holds. In particular, for f = g we get 1
2π

∑∞
n=−∞

∣∣∣f̂n

∣∣∣
2

=
∫ π

−π
|f(t)|2 dt.

Example 2.2.5 Parseval’s formula and the zeta function.

Applying the Parseval equation to the function f(t) = (π− t)/2 on (0, 2π) from
the first example in this section again gives the identity, after simplifying,

ζ(2) =
∞∑

n=1

1

n2
=

π2

6
.

This is the same result as in the previous example, but the Parseval equation is
conceptually simpler than the Jordan test. Applying the Parseval equation to
f(t) = t2/4− πt/2 + π2/6 gives

ζ(4) =
∞∑

n=1

1

n4
=

π4

90
,

and this can be continued to give ζ(2n) as a rational multiple of π2n for any
n ∈ N. The general formula is given in the next chapter, by a different method.
Similar formulas for ζ(2n+1) are unknown (and highly unlikely to exist; see the
next chapter for more information). 2
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Example 2.2.6 Parseval’s formula and Euler sums.

Multiplying (2.2.6) and (2.2.7), using the Cauchy product, simplifying, and per-
forming a partial fraction decomposition gives

− ln |2 sin(t/2)| · π − t

2
=

∞∑
n=1

1

n

n−1∑

k=1

1

k
sin(nt) on (0, 2π). (2.2.9)

Now Parseval proves the Euler sum formula that we first mentioned in the first
volume:

1

4

∫ 2π

0

(π − t)2 ln2(2 sin(t/2)) dt = π

∞∑
n=1

(∑n−1
k=1 k−1

)2

n2
.

2

2.2.2 Fourier Transforms

We now consider functions f : R → C. For p > 0, we write f ∈ Lp(R) if such an
f is Lebesgue measurable and satisfies

‖f‖p =

[∫ ∞

−∞
|f(t)|p dt

]1/p

< ∞.

As before, functions which are equal a.e. will be identified, so that ‖·‖p is a norm.
In what follows, we will be mainly interested in the spaces L1(R) and L2(R). In
contrast to the periodic case, there is now no inclusion relation between these
spaces. If f : R → C is continuous, we write f ∈ C(R) and equip this space
with the uniform norm.

The Fourier transform on L1(R) is now a direct analog of the Fourier co-
efficients on L1(T). By further analogy to the previous subsection, a Fourier
transform on L2(R) would also be of interest. However, the definition of such an
L2(R)-transform is not as straightforward as before, since these spaces are not
contained in each other. There is, however, a meaningful transform on L2(R),
and we will discuss this after giving the properties of the L1(R)-transform.
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Fourier Transform on L1(R). For a function f ∈ L1(R), define the Fourier

transform of f to be the function f̂ : R → C given by

f̂(x) =

∫ ∞

−∞
f(t) e−ixt dt.

As the example f = I(−π,π) (characteristic function) with f̂(x) = 2 sin(πx)/π
shows, the Fourier transform of an f ∈ L1(R) need not be in L1(R). It is not

difficult to show, however, that such an f̂ is always continuous, with ‖f̂‖∞ ≤
‖f‖1. The Riemann-Lebesgue lemma says that, additionally, lim|x|→∞ f̂(x) = 0.
It is proved by approximating f by step functions.

Under what conditions can an f ∈ L1(R) be reconstructed from its Fourier
transform? In principle, this is always possible: By the uniqueness theorem for
Fourier transforms, functions with the same Fourier transform must be equal a.e.
In practice, one would like a simple formula for this inversion. Such a formula
is given in the inversion theorem below, whose proof is not easy: It depends
on constructing and investigating a suitable summation kernel for the Fourier
transform (often the Gauss or the Fejér kernel is used).

Theorem 2.2.7 If f ∈ L1(R) is such that f̂ ∈ L1(R), then f, f̂ ∈ C(R) and

f(t) =
1

2π

∫ ∞

−∞
f̂(x) eixt dx (2.2.10)

for all t ∈ R.

Conditions which are good for f̂ ∈ L1(R) are given in Item 10 at the end of
this chapter.

Example 2.2.8 Sinc integrals.

For f(t) = max{1 − |t|, 0}, we compute f̂(x) = sinc2(x/2) ∈ L1(R), where
sinc x = (sin x)/x. Thus by Theorem 2.2.7, we immediately get

∫ ∞

−∞
sinc2(x/2) eixt dx = 2π max{1− |t|, 0} (2.2.11)

for all t, and especially
∫∞
−∞ sinc2(x/2) dx = 2π. The integral transform package

of Maple knows this integral:
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inttrans[fourier]((sin(x/2)/(x/2))^2,x,t);

returns

2 Pi (-2 t Heaviside(t) + t Heaviside(t - 1) - Heaviside(t - 1)
+ t Heaviside(t + 1) + Heaviside(t + 1))

This is an inelegant form of the answer we gave. Note that newer versions
of Maple can evaluate the integral directly as well, while in previous versions
this was only possible with the use of the Fourier transform, so that researchers
required more knowledge about what they were doing. Thus this is another
example of being able to watch technology in progress! 2

Fourier Transform on L2(R). Since L2(R) is not a subset of L1(R), in contrast
to the periodic case, the definition of the Fourier transform cannot be directly
transferred onto this space: The function f(t) e−ixt may not be integrable! For
this reason, the Fourier transform on L2(R) is usually defined as the continuation
of the Fourier transform on L1(R)∩L2(R) which is dense in L2(R). An equivalent
(and more practical) definition is the following. First of all, note that for f ∈
L2(R), fA = f · χ(−A,A) ∈ L1(R) for any A > 0. It can be proved, with some

effort, that then f̂A ∈ L2(R) and that the L2(R)-limit of the functions f̂A for
A →∞ exists in L2(R).

Definition 2.2.9 Let f ∈ L2(R). The L2(R)-limit of the functions f̂A for A →
∞ is called the Fourier (or Plancherel) transform of f and is again denoted by

f̂ .

By definition, the Fourier transform of an f ∈ L2(R) is always in L2(R). It
need not be continuous, nor does the Riemann/Lebesgue lemma hold. It can be

proved that ‖f‖2 = ‖f̂‖2 (Parseval equation), and that every function in L2(R)
is the Fourier transform of an f ∈ L2(R). An f ∈ L2(R) is reconstructible from
its Fourier transform by the same process as in Theorem 2.2.7.

Theorem 2.2.10 For any f ∈ L2(R),

f(t) =
1

2π

∫ ∞

−∞
f̂(x) eixt dx = lim

A→∞
1

2π

∫ A

−A

f̂(x) eixt dx (2.2.12)

in L2(R).
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Example 2.2.11 Fourier transform of sine-exponential.

We have already computed f̂(x) = 2 sin(πx)/x for f(t) = χ(−π,π)(t). This f̂ is
in L2(R), but not in L1(R). Theorem 2.2.10 now says that

∫ ∞

−∞

sin(πx)

πx
eixt dx = χ(−π,π)(t) a.e. 2

It would be interesting to replace this a.e. statement with a pointwise state-
ment, since a.e. statements are more difficult to handle when the goal is exact
evaluation of a series or integral, and so they are less useful for experimental
mathematics. In fact, a standard theorem of Fourier analysis (Jordan’s theo-
rem, see [75, page 205]) is: If f ∈ L1(R) is of bounded variation in an interval
including the point t, then

lim
a→∞

1

2π

∫ a

−a

f̂(x) eixt dx =
1

2
(f(t+) + f(t−)) .

Applied to the above example, this gives

lim
a→∞

∫ a

−a

sin(πx)

πx
eixt dx =





0 for |t| > π,

1 for |t| < π,
1
2

for |t| = π.

(2.2.13)

2.3 More Advanced Fourier Analysis

2.3.1 The Poisson Summation Formula

There are obvious similarities between Fourier series and Fourier transforms.
Thus one would think that there are connections between the two concepts.
That is indeed so, and the link is provided by the Poisson summation formula.

As a first example, take a function F ∈ L1(T), and note that F̂n = f̂(n) if
f ∈ L1(R) is defined to equal F on (−π, π) and to vanish everywhere else. This
already is a simple special case of the Poisson summation formula.

A second approach to Poisson summation can be motivated by the following
question. Take a function g ∈ C(R), and assume that the sequence (g( n

w
)) is
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absolutely summable for each w > 0. Consider Fw(t) =
∑∞

n=−∞ g
(

n
w

)
eint for

w > 0. Such functions Fw are often investigated in connection with summa-
tion procedures for Fourier series, and we will do so later. A first graphical
observation is that the restrictions to (−π, π) of these functions Fw tend to be
concentrated more and more around 0 for increasing w. If, however, the func-
tions (1/w) · Fw(t/w) are plotted, then there seems to be convergence to a limit
function that depends on g. What is this limit function, and how can we prove
convergence? The answer is again given by the Poisson summation formula.

In general, the Poisson formula links the finite and the infinite transforms
via the so-called periodization, an operation which associates L1(R)-functions in
a natural way with 2π-periodic functions: For f ∈ L1(R), set F (t) =

∑
j∈Z f(t+

2πj) for all t for which the limit exists. The next theorem is (one version of)
the classical Poisson formula, linking the Fourier series of F with the Fourier
transform of f .

Theorem 2.3.1 (Poisson summation formula). Let f ∈ L1(R).

(a) The periodization F exists for almost every t ∈ T, and we have F ∈ L1(T)
and ‖F‖1 ≤ ‖f‖1.

(b) The Fourier series of F is

∞∑
j=−∞

f(t + 2πj) ∼ 1

2π

∞∑
n=−∞

f̂(n) eint, (2.3.14)

or in other words, we have F̂n = f̂(n) for all n ∈ Z.

Proof.
(a) Obviously f(t + 2πj) is integrable over [−π, π], and we have

∞∑
j=−∞

∫ π

−π

|f(t + 2πj)| dt =
∞∑

j=−∞

∫ π+2πj

−π+2πj

|f(t)| dt

=

∫ ∞

−∞
|f(t)| dt = ‖f‖L1(R) < ∞.

By B. Levi’s theorem, the series F is absolutely convergent a.e., we have F ∈
L1(T), and summation and integration can be exchanged. Now we also get
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‖F‖L1(T) ≤ ‖f‖L1(R) by using the triangle inequality, doing the exchange and
then using the above computation.

(b) Now applying B. Levi’s theorem to the functions f(t+2πj) · e−nt for fixed n,
and using the fact that the function e−int is 2π-periodic, we get with the same
summation trick as before,

F̂n =

∫ π

−π

F (t) e−int dt =

∫ ∞

−∞
f(t) e−int dt = f̂(n).

2

Of course, it is interesting to ask when the identity holds pointwise instead of
just in the sense of Fourier series. From the Jordan test, it can be deduced that
if f ∈ L1(R) ∩ BV (R) and f(t) = 1

2
(f(t+) + f(t−)) everywhere, then equality

holds for all t.

Example 2.3.2 Fourier series of hyperbolic functions.

Choose y > 0 and define

f(t) =

{
e−yt for t > 0,

0 for t < 0,

and f(0) = 1/2. Then f̂(x) = (y + ix)−1, and Poisson says that

∞∑
j=−∞

f(t + 2πj) =
1

2π

∞∑
n=−∞

1

y + in
eint,

which is equivalent to

1

2π

(
1

y
+ 2

∞∑
n=1

y cos(nt) + n sin(nt)

y2 + n2

)
=

∑

j>t/(2π)

e−y(t+2πj) +

{
1
2
, t ∈ 2πZ,

0, otherwise.

Setting t = 0, we get

π coth(πy) =
1

y
+ 2y

∞∑
n=1

1

y2 + n2
.
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Setting t = 1/2, we get

πcosech(πy) =
1

y
+ 2y

∞∑
n=1

(−1)n

x2 + n2
. 2

Example 2.3.3 A quadratic exponential identity.

Now choose s > 0 and set f(t) = e−st2 . Then f̂(x) =
√

π/s e−x2/(4s) (see Section
5.6 of the first volume), and Poisson says that

∞∑
j=−∞

e−s(t+2πj)2 =
1

2

√
1

πs

∞∑
n=−∞

e−n2/(4s) eint. (2.3.15)

By analyticity, this can be extended to hold for all Re(s) > 0. We will meet this
formula again in Section 3.1. 2

Example 2.3.4 An experimental version of Poisson’s formula.

Take an even real-valued continuous g ∈ L1(R) such that (g( n
w
)) is absolutely

summable for each w > 0 and assume that ĝ ∈ L1(R). Then using Poisson and
the inversion theorem 2.2.7 it follows that

∞∑
n=−∞

g
( n

w

)
eint = w

∞∑
j=−∞

ĝ (w(t + 2πj)) , (2.3.16)

where equality is meant in L1(T). This equality does not hold pointwise! In

Katznelson’s book [149], an example is given of a function f ∈ L1(R) with f̂ ∈
L1(R) for which equality does not hold pointwise in Poisson’s formula (2.3.14),
because the periodization does not converge uniformly. This is the “dangerous
pitfall” that we mentioned earlier: Even though the left-hand side of (2.3.16) is a
continuous function, the right-hand side is not necessarily continuous; it is only
equal to a continuous function a.e. To deduce pointwise equality from this would
be wrong! This is a noteworthy difference to the situation in Theorem 2.2.7.

In any case, this gives an answer to the question at the beginning of the
present subsection: The limit function (in the L1(R) sense) of the Fw, restricted



2.3. MORE ADVANCED FOURIER ANALYSIS 93

to (−π, π) and then suitably rescaled, is the Fourier transform of g. This follows
from (2.3.16), since

‖ 1
w
Fw

(
t
w

) · χ(−πw,πw) − ĝ(t)‖1 =

∫ πw

−πw

|
∞∑

j=−∞
j 6=0

ĝ(t + 2πjw)| dt +

∫

|t|>πw

|ĝ(t)| dt

≤ 2

∫

|t|>w

|ĝ(t)| dt → 0 (w →∞)

if ĝ ∈ L1(R). Often enough (but not always) this convergence is even uniform
on R.

This is a very visual theorem; it can be discovered and explored on the
computer. In this sense, Formula (2.3.16) is the experimental version of Poisson’s
summation formula! 2

2.3.2 Convolution Theorems

As we have seen, the Fourier series even of a continuous function need not
converge back to the function, neither in the L1-sense nor pointwise. Often,
convergence properties of such a series can be improved by putting additional
factors into the series to “force convergence.” For example, it can be proved
(and will be in the next subsection) that for f ∈ C(T), the series

σn(f, t) =
1

2π

n∑

k=−n

(
1− |k|

n + 1

)
f̂k eikt

converges to f uniformly as well as in the L1-sense; this is Fejér’s famous theorem.
How do these convergence factors work? If we set

Fn(t) =
n∑

k=−n

(
1− |k|

n + 1

)
eikt,

then the Fourier coefficients of σn(f, t) are the product of those of f and those of
Fn. Thus it seems reasonable that convergence properties of σn can be deduced
from suitable properties of Fn. An important relation between these objects is
given by the following theorem.
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Theorem 2.3.5 (Convolution theorem for the torus.) For f, g ∈ L1(T),
define

h(t) = (f ∗ g)(t) =
1

2π

∫ π

−π

f(t− u) g(u) du.

(a) Then the integral exists for a.e. t ∈ T, and we have h ∈ L1(T) and
‖h‖1 ≤ 1

2π
‖f‖1 ‖g‖1.

(b) Moreover, ĥn = 1
2π

f̂n · ĝn holds for the Fourier coefficients.

Applied to the question above, this convolution theorem says that σn(f, t) =
(Fn ∗ f)(t). In the next section, this will lead to a proof of Fejér’s theorem. We
will in fact be able to treat much more general summation kernels.

In the following sections, we will also need a convolution theorem in L1(R).

Theorem 2.3.6 (Convolution theorem for the real line.) For f, g ∈
L1(R), define

h(t) = (f ∗ g)(t) =

∫ ∞

−∞
f(t− u) g(u) du.

(a) Then the integral exists for a.e. t ∈ R, and we have h ∈ L1(R) and
‖h‖1 ≤ ‖f‖1 ‖g‖1.

(b) Moreover, ĥ(x) = f̂(x) · ĝ(x) holds for the Fourier transforms.

The convolution in L1(R) tends to make functions smoother but less localized.
If g is, for example, the characteristic function of an interval, then h = f ∗ g will
be absolutely continuous for every L1-function f . If, on the other hand, both f
and g are L1-functions with bounded supports, equal to, say, [−a, a] and [−b, b],
then the support of h = f ∗ g will be equal to [−(a + b), a + b].

Convolution theorems are quite important in computational mathematics!
To compute a convolution, one usually has to perform many multiplications,
so that it is expensive in terms of time and memory. On the other hand,
a single multiplication is often cheap. The convolution theorems (which have
many analogs for different types of convolutions) say that convolutions can be
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transformed into multiplications and thus may be much easier to compute than
appears on first glance. Techniques for computing convolutions using the fast
Fourier transform (FFT) are presented in Chapter 6 of the first volume. The
speed of convolutions computed using FFTs is a principal reason that Fourier
theory in general, and the FFT in particular, are so important in computational
science.

2.3.3 Summation Kernels

With regard to Fejér’s sum σn, the convolution theorem says that σn(f, t) =
(Fn∗f)(t), and we are interested in the question of whether Fn∗f → f for n →∞
in a suitable norm (L1 or uniformly). This question can be generalized: Under
what conditions on a family of functions (Kw) ⊆ L1(T) is there convergence
‖Kw ∗ f − f‖1 → 0 (w → ∞) for all f ∈ L1(T)? Under what conditions is
there uniform convergence for continuous f? Any family of type (Kw) is called a
kernel. If there is suitable convergence, then (Kw) is also called an approximate
identity, and the question is now open to systematic experimentation. Which
conditions of a kernel make it an approximate identity?

It is proved in Katznelson’s book [149] that the following conditions imply
that a kernel (Kw) ⊆ L1(T) is an approximate identity for Lp(T) (1 ≤ p < ∞)
and for C(T):

(S1)
1

2π

∫ π

−π

Kw(t) dt = 1 for all w,

(S2)

∫ π

−π

|Kw(t)| dt ≤ M uniformly in w,

(S3) lim
w→∞

∫

δ≤|t|≤π

|Kw(t)| dt = 0 for all 0 < δ < π.

Of particular interest here are kernels of the form Kw(t) =
∑∞

k=−∞ g( k
w
) eikt

for suitable functions g, since many classical kernels are of this form. Now our
direction should be clear: The “experimental” version (2.3.16) of the Poisson
formula will be of use.

Theorem 2.3.7 Let Kw(t) =
∑∞

k=−∞ g( k
w
) eikt and assume that g ∈ C(R) ∩

L1(R), that (g( n
w
)) is absolutely summable for each w > 0, and that g(0) = 1

and ĝ ∈ L1(R). Then (Kw) is an approximate identity.
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Proof. We have to check (S1)–(S3) above. Condition (S1) is a condition on
the middle Fourier coefficient of Kw and follows from g(0) = 1. Regarding (S2),
we have, using (2.3.16) and the theorem of B. Levi,

∫ π

−π

|Kw(t)| dt =
1

2π

∫ π

−π

∣∣∣∣∣w
∞∑

j=−∞
ĝ(w(t + 2πj))

∣∣∣∣∣ dt

≤ w

∞∑
j=−∞

∫ π

−π

|ĝ(w(t + 2πj))| dt

= w

∫ ∞

−∞
|ĝ(wt)| dt = ‖ĝ‖1,

which is a uniform bound. Finally, we get by similar computations as before
that

∫

δ≤|t|≤π

|Kw(t)| dt ≤
∫

|t|>wδ

|ĝ(t)| dt,

which tends to 0 for w →∞ since ĝ ∈ L1(R). 2

All of the conditions in Theorem 2.3.7 are easily checked symbolically. More-
over, the methods employed here allow more detailed investigations of the ap-
proximation properties of the kernels by direct computation of the Fourier trans-
form. For example, often the Lebesgue constants, defined as ‖Kw‖1, determine
the rate of convergence of Kw ∗ f to f , or, if Kw is not an approximate identity,
the growth rate of Kw ∗ f . The Lebesgue constants, as computed in the proof
of (S2), satisfy ‖Kw‖1 ≤ ‖ĝ‖1. This bound is precise, since the same Poisson
methods also give

‖Kw‖1 ≥ ‖ĝ‖1 − 2

∫

|t|>πw

|ĝ(t)| dt.

Example 2.3.8 The Fejér kernel.

The kernel Fn as defined above comes from the Cesàro summation method ap-
plied to Fourier series; thus σn(f, t) = (Fn ∗ f)(t). By geometric summation, Fn

can also be written as

Fn(t) =
sin2(n+1

2
t)

(n + 1) sin2( t
2
)
.
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If we set g(x) = max{1 − |x|, 0}, then Fn = Kn+1. Since ĝ(t) = sinc2(t/2) ∈
L1(R), the conditions of Theorem 2.3.7 are satisfied. Thus we deduce directly
that Fn is an approximate identity in Lp(T) and in C(T). Moreover, since ĝ is
non-negative, for the Lebesgue constants we obtain ‖Fn‖1 = ‖ĝ‖1 = 2π (compare
with the example in Section 2.2.2). 2

Example 2.3.9 The Poisson kernel.

Another important summation method is Abel summation. Applied to Fourier
series, it leads to the Poisson kernel, defined as

Pr(t) =
∞∑

k=−∞
r|k| eikt =

1− r2

1− 2r cos(t) + r2
for 0 ≤ r < 1.

The question is whether Pr ∗ f → f in Lp(T) or in C(T) for r → 1. By
setting w = −1/ ln(r) and g(x) = e−|x|, we have Pr(t) = Kw(t). Since ĝ(t) =
2/(1+ t2) ∈ L1(R), Theorem 2.3.7 produces convergence of Pr ∗f to f . Similarly
to the Fejér kernel, Pr as well as g and ĝ are nonnegative, so that we again have
‖Pr‖1 = ‖Kw‖1 = ‖ĝ‖1 = 2π. 2

Example 2.3.10 The Dirichlet kernel.

The same methods also explain why the usual summation of Fourier series does
not always give convergence. This summation corresponds to the Dirichlet kernel

Dn(t) =
n∑

k=−n

eikt =
sin

((
n + 1

2

)
t
)

sin
(

t
2

)

via sn(f, t) = (Dn∗f)(t). The Dirichlet kernel is of the form Kn with g = χ[−1,1].
This g is neither continuous, nor does it have a Fourier transform in L1(R) (its
Fourier transform is ĝ(t) = 2 sinc(t).) Thus Theorem 2.3.7 is not applicable.
But the experimental Poisson formula (2.3.16) can still be used to estimate the
Lebesgue constants and gives ‖Dn‖1 =

∫ nπ

−nπ
|2 sinc(t)| dt + O(1) = (8/π) ln n +

O(1). These are unbounded, and so the Dirichlet kernel can be expected to have
worse summation properties than the Fejér and Poisson kernels above. 2
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In summary, the methods described here are very useful to gauge norm-
convergence properties of kernels of the special form Kw(t) =

∑
g( k

w
) eikt in a

direct, computational way, and they open the door to further experimentation.
Our description has been adapted from [123], but reportedly these methods go
back at least to Korovkin.

These methods deal with norm- and uniform convergence. But what about
pointwise convergence? As described in [149], instead of (S1)–(S3), the following
properties of a kernel can be used to prove pointwise convergence of Kw ∗ f to
f : Kw satisfies (S1), is non-negative and even, and satisfies

lim
w→∞

(
sup

δ≤|t|≤π

Kw(t)

)
= 0 for all 0 < δ < π.

This allows one to decide, for given f ∈ L1(T) and t0 ∈ R, whether (Kw ∗
f)(t0) converges to f(t0).

For the Fejér kernel, it leads to Lebesgue’s condition: If there exists a value
f̌(t0) such that

lim
h→0

1

h

∫ h

0

∣∣∣∣
f(t0 + t) + f(t0 − t)

2
− f̌(t0)

∣∣∣∣ dt = 0,

then σn(f, t) → f̌(t0) for n →∞. In particular, σn(f, t) → f(t) a.e.
For the Poisson kernel, it leads to Fatou’s condition: If there exists a value

f̌(t0) such that

lim
h→0

1

h

∫ h

0

(
f(t0 + t) + f(t0 − t)

2
− f̌(t0)

)
dt = 0,

then (Pr ∗ f)(t0) → f̌(t0) for r → 1−. In particular, (Pr ∗ f)(t) → f(t) a.e.
The convergence is uniform on closed subintervals where f is continuous.

2.4 Examples and Applications

2.4.1 The Gibbs Phenomenon

If a function f ∈ L1(T) is of bounded variation, it may have jump discontinuities.
The Jordan test says that the Fourier series of f converges to the center of the gap
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at such a point. Directly to the left and right of the jump, the series converges
pointwise, but not uniformly on any interval containing the discontinuity, to
the function. The function f(t) = (π − t)/2 =

∑
n−1 sin(nt) on [0, 2π] is a

good example for this behavior (see Figure 2.1), where the series for (π− t)/2 is
evaluated to 20 terms.

One notices that the truncated Fourier series “overshoots” the function at the
discontinuity. These oscillations do not diminish when more terms are added;
they just move closer to the discontinuity. When the experimental physicist
A. Michelson (famous for the Michelson-Morley experiment, which led to Ein-
stein’s special relativity) had built a machine to calculate Fourier series and fed
it a discontinuous function, he noticed this phenomenon. It was unexpected for
him, but after hand calculations confirmed this behavior, he wrote a letter to
Nature in 1898, expressing his doubts that “a real discontinuity can replace a
sum of continuous curves” (cited after Bhatia [25]). J. Willard Gibbs, one of
the founders of modern thermodynamics, replied to this letter and clarified the
matter. Thus here we have another example of a mathematical theorem that
was experimentally discovered (by an experimental physicist)!

Now what is the explanation for the Gibbs phenomenon? Inspection of the
picture shows that the largest overshoot seems to occur around the point π/N
if N terms of the Fourier series are added. Thus we compute

sN

(
f,

π

N

)
=

N∑
n=1

sin
(

nπ
N

)

n
=

π

N

N∑
n=1

sin
(

nπ
N

)
nπ
N

,

where the last sum is a Riemann sum for the integral

I =

∫ π

0

sin(t)

t
dt.

Therefore, sN(f, π/N) → I for N →∞. Since I/f(0+) = I/(π/2) ≈ 1.178979744,
this explains why the overshoot does not go away for large N . This overshoot of
roughly 18% is not dependent on the function f used here as an example, but
can be observed (and proved) for any jump discontinuity.

Does the Gibbs phenomenon vanish when we use Fejér’s series instead of
the Fourier series? Figure 2.2 shows the Fejér approximation to f , again to 20
terms. The oscillation is now replaced by a pronounced “undershoot” to the
right of 0 (this can be explained by the positivity of the Fejér kernel); again, the
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undershoot can be observed to move closer to the discontinuity, but not vanish
altogether when more terms are added. In fact, we have to pay for the increased
smoothness of the approximation by its reduced willingness to snuggle up to the
limit function.

2.4.2 A Function with Given Integer Moments

The k-th moment of a function f ∈ L1(R) is defined as

µk(f) =

∫ ∞

−∞
f(t) tk dt,

provided that t 7→ f(t) tk ∈ L1(R). The Hamburger moment problem is the
problem to find a function f with a given sequence of moments (µk). This
problem is underdetermined: There can be nonvanishing functions whose every
moment is 0. This is easily seen by the following argument. Assume that f is k
times differentiable with every derivative in L1(R). Then by partial integration,

f̂ (k)(x) =

∫ ∞

−∞
f (k)(t) e−ixt dt = (ix)k f̂(x),

and by the inversion theorem,
∫∞
−∞ f̂(x) xk dx = 2πf (k)(0). Thus if f ∈ L1(R) is

infinitely differentiable with every derivative in L1(R) and satisfies f (k)(0) = 0

for all k, then all moments of f̂ vanish. Of course, such nontrivial functions f
exist, even with compact support.

Obviously, for an even function every odd moment vanishes. To generalize
this, it is quite easy to find, for given n ∈ N, a function whose k-th moment
is nonzero precisely when k mod n = 0. Just choose an infinitely differentiable
function f ∈ L1(R) with all derivatives in L1(R), and such that all its derivatives
are nonzero at 0. Then set g(t) = f(tn), and by the chain and product rule of
differentiation, g(k)(0) is nonzero precisely for k mod n = 0. Thus, ĝ satisfies the
moment condition. If f is analytic, say f(t) =

∑∞
j=0 aj tj, then g(k)(0) = (qn)! aq

if k = qn and g(k)(0) = 0 otherwise. An example for such a function f is
f(t) = (1 + t) e−t2/2.

When this was first investigated some years ago, numerical fast Fourier trans-
forms were used—as a test—to calculate the moments for g(t) = f(tn), where
f(t) = (1 + t) e−t2/2 as above. The scheme for doing this is presented in Section
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Figure 2.1: The Gibbs phenomenon for Fourier series.
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Figure 2.2: The Gibbs phenomenon for Fejér series.
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6.1 of the first volume. When this was done, it was noticed that the resulting mo-
ment values were extremely accurate, far more than one would expect based on
what amounts to a simple step-function approximation to the Fourier integrals.
Readers may recall that we also encountered this phenomenon in Section 5.2
of the first volume. This phenomenon, which is rooted in the Euler-Maclaurin
summation formula, is the foundation of some extremely efficient and highly
accurate numerical quadrature schemes, which we shall see in Sections 7.4.2 and
7.4.3.

2.4.3 Bernoulli Convolutions

Consider the discrete probability density on the real line with measure 1/2 at
each of the two points ±1. The corresponding measure is the so-called Bernoulli
measure, denoted b(X). For every 0 < q < 1, the infinite convolution of measures

µq(X) = b(X) ∗ b(X/q) ∗ b(X/q2) ∗ · · · (2.4.17)

exists as a weak limit of the finite convolutions. The most basic theorem about
these infinite Bernoulli convolutions is due to Jessen and Wintner ([145]). They
proved that µq is always continuous, and that it is either absolutely continuous or
purely singular. This statement follows from a more general theorem on infinite
convolutions of purely discontinuous measures (Theorem 35 in [145]); however,
it is not difficult to prove the statement directly with the use of Kolmogoroff’s
0-1-law (which can be found, e.g., in [26]). The question about these measures is
to decide for which values of the parameter q they are singular, and for which q
they are absolutely continuous.

This question can be recast in a more real-analytic way by defining the dis-
tribution function Fq of µq as

Fq(t) = µq(−∞, t], (2.4.18)

and to ask for which q this continuous, increasing function Fq is singular, and
for which it is absolutely continuous. Note that Fq satisfies Fq(t) = 0 for t <
−1/(1− q) and Fq(t) = 1 for t > 1/(1− q).

Another way to define the distribution function Fq is by functional equations:
Fq is the only bounded solution of the functional equation

F (t) =
1

2
F

(
t− 1

q

)
+

1

2
F

(
t + 1

q

)
(2.4.19)
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with the above restrictions. Moreover, if Fq is absolutely continuous and thus
has a density fq ∈ L1(R), then fq satisfies the functional equation

2q f(t) = f

(
t− 1

q

)
+ f

(
t + 1

q

)
(2.4.20)

almost everywhere. This is a special case of a much more general class of equa-
tions, namely two-scale difference equations. Those are functional equations of
the type

f(t) =
N∑

n=0

cn f(αt− βn) (t ∈ R), (2.4.21)

with cn ∈ C, βn ∈ R and α > 1. They were first discussed by Ingrid Daubechies
and Jeffrey C. Lagarias, who proved existence and uniqueness theorems and
derived some properties of L1-solutions [105, 106]. One of their theorems, which
we state here in part for the general equation (2.4.21) and in part for the specific
case (2.4.20), is the following:

Theorem 2.4.1 (a) If α−1(c0 + · · ·+ cN) = 1, then the vector space of L1(R)-
solutions of (2.4.21) is at most one-dimensional.

(b) If, for given q ∈ (0, 1), equation (2.4.20) has a nontrivial L1-solution fq,

then its Fourier transform satisfies f̂q(0) 6= 0, and is given by

f̂q(x) = f̂q(0)
∞∏

n=0

cos(qn x). (2.4.22)

In particular, for normalization we can assume f̂q(0) = 1.

(c) On the other hand, if the right-hand side of (2.4.22) is the Fourier trans-
form of an L1-function fq, then fq is a solution of (2.4.20).

(d) Any nontrivial L1-solution of (2.4.21) is finitely supported. In the case
of (2.4.20), the support of fq is contained in [−1/(1− q), 1/(1− q)].

This implies in particular that the question of whether the infinite Bernoulli
convolution (2.4.17) is absolutely continuous is equivalent to the question of
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whether (2.4.20) has a nontrivial L1-solution. Now what is known about these
questions?

It is relatively easy to see that in the case 0 < q < 1/2, the solution of (2.4.19)
is singular; it is in fact a Cantor function, meaning that it is constant on a dense
set of intervals. This was first proved by R. Kershner and A. Wintner [151]. (An
example of a Cantor function is depicted in Figure 6.1 of the first volume.)

It is also easy to see that in the case q = 1/2, there is an L1-solution
of (2.4.20), namely f1/2(t) = 1

4
χ[−2,2](t). Moreover, this can be used to con-

struct a solution for every q = 2−1/p where p is an integer, namely

f2−1/p(t) = 2(p−1)/2 · [f1/2(t) ∗ f1/2(2
1/pt) ∗ · · · ∗ f1/2(2

(p−1)/pt)
]
. (2.4.23)

This was first noted by Wintner via the Fourier transform [214]. Explicitly, we
have

f̂2−1/p(x) =
∞∏

n=0

cos(2−n/px) =
∞∏

m=0

p−1∏

k=0

cos(2−(m+k/p)x)

= f̂1/2(x) · f̂1/2(2
−1/px) · · · f̂1/2(2

−(p−1)/px),

which is equivalent to (2.4.23) by the convolution theorem.
Note that the regularity of these solutions f2−1/p increases when p and thus

q = 2−1/p increases: f2−1/p ∈ Cp−2(R). From the results given so far, one might
therefore surmise that (2.4.20) would have a nontrivial L1-solution for every
q ≥ 1/2 with increasing regularity when q increases. This supposition, however,
would be wrong, and it came as a surprise when Erdős proved in 1939 [116]
that there are some values of 1/2 < q < 1 for which (2.4.20) does not have an
L1-solution, namely, the inverses of Pisot numbers. A Pisot number (discussed
further in Exercise 13 of Chapter 7) is defined to be an algebraic integer greater
than 1 all of whose algebraic conjugates lie inside the unit disk. The best known
example of a Pisot number is the golden mean ϕ = (

√
5+1)/2. The characteristic

property of Pisot numbers is that their powers quickly approach integers: If a is
a Pisot number, then there exists a θ, 0 < θ < 1, such that

dist(an, Z) ≤ θn for all n ∈ N. (2.4.24)

Erdős used this property to prove that if q = 1/a for a Pisot number a, then

lim supx→∞
∣∣∣f̂q(x)

∣∣∣ > 0. Thus in these cases, fq cannot be in L1(R), since that
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would contradict the Riemann-Lebesgue lemma. Erdős’s proof uses the Fourier
transform f̂q: Consider, for N ∈ N,

∣∣∣f̂q(q
−Nπ)

∣∣∣ =
∞∏

n=1

|cos(qnπ)| ·
N−1∏
n=0

∣∣cos(q−nπ)
∣∣ =: C · pN ,

where C > 0. Moreover, choose θ 6= 1/2 according to (2.4.24) and note that

pN =
N−1∏
n=0

θn≤1/2

∣∣cos(q−nπ)
∣∣ ·

N−1∏
n=0

θn>1/2

∣∣cos(q−nπ)
∣∣

≥
N−1∏
n=0

θn≤1/2

cos(θnπ) ·
N−1∏
n=0

θn>1/2

∣∣cos(q−nπ)
∣∣

≥
∞∏

n=0
θn≤1/2

cos(θnπ) ·
∞∏

n=0
θn>1/2

∣∣cos(q−nπ)
∣∣ = C ′ > 0,

independently of N .
In 1944, Raphaël Salem [191] showed that the reciprocals of Pisot numbers are

the only values of q where f̂q(x) does not tend to 0 for x →∞. In fact, no other
q > 1/2 are known at all where Fq is singular. Moreover, the set of explicitly
given q with absolutely continuous Fq is also not very big: The largest such set
known to date was found by Adriano Garsia in 1962 [120]. It contains reciprocals
of certain algebraic numbers (such as roots of the polynomials xn+p− xn− 2 for
max{p, n} ≥ 2) besides the roots of 1/2.

Matters remained in this state for more than 30 years; the question remained
settled only for countably many q ∈ [1/2, 1). The most recent significant progress
then was made in 1995 by Boris Solomyak [201], who developed exciting new
methods in geometric measure theory to prove that Fq is in fact absolutely
continuous for almost every q ∈ [1/2, 1). (See also [177] for a simplified proof
and [176] for a survey and some newer results.)

This, however, yields no explicit result; the set of q for which the behavior of
Fq is known explicitly is the same as before. Here we suggest an experimental
approach to at least identify q-values for which the behavior of Fq can be guessed.
In fact, define a map Tq, mapping the set of L1-functions with support in [−1/(1−
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q), 1/(1− q)] and with f̂q(0) = 1 into itself, by

(Tqf)(t) =
1

2q

(
f

(
t− 1

q

)
+ f

(
t + 1

q

))
for t ∈ R.

Then note that the fixed points of Tq are the solutions of (2.4.20) and that Tq is
nonexpansive (see Chapter 6). Therefore, one may have hope that by iterating
the operator, it may be possible to approximate the fixed point. In fact, if a
sequence of iterates T n

q f converges in L1(R) for some initial function f , then the
limit will be a fixed point of Tq, since Tq is continuous. It is, however, not easy
to prove convergence; no convergence proof is known. It is, on the other hand,
possible to prove a weaker result, namely convergence in the mean, provided that
a fixed point exists: If a solution fq ∈ L1(R) with f̂q(0) = 1 of (2.4.20) exists,
then for every initial function f ∈ L1(R) with support in [−1/(1− q), 1/(1− q)]

and with f̂(0) = 1, we have,

lim
n→∞

∥∥∥∥∥
1

n

n−1∑

k=0

T k
q f − fq

∥∥∥∥∥
1

= 0.

This theorem follows from properties of Markov operators [155] and from a result
by Mauldin and Simon [164], showing that if an L1-density fq exists, then it must
be positive a.e. on its support.

In practice, we observe that the iterates usually seem to converge directly,
even without the means. Plotting them, we hope to infer existence and regularity
of L1-solutions by visual inspection. The figures on the next pages show the 25th
iterate for f = (1 − q)/2 χ[−1/(1−q),1/(1−q)] as initial function. Figure 2.3 shows

convergence to 21/2 · [f1/2(t) ∗ f1/2(2
1/2t)

]
for q = 1/

√
2; Figure 2.4 shows that

for q = (
√

5− 1)/2, the iterates do not converge to a meaningful function. It is
not known if there is a density for any rational q ∈ (1/2, 1). Figures 2.5 and 2.6
show that there seems to be a continuous limit in both cases shown; moreover,
regularity seems to increase when q increases.

2.5 Some Curious Sinc Integrals

Define

In =

∫ ∞

0

sinc x · sinc
(x

3

)
· · · sinc

(
x

2n + 1

)
dx.
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Figure 2.3: 25th iterate for q = 1/
√
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Figure 2.4: 25th iterate for q = (
√

5− 1)/2.
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Figure 2.5: 25th iterate for q = 2/3.
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Figure 2.6: 25th iterate for q = 3/4.
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Then Maple and Mathematica evaluate

I0 =

∫ ∞

0

sinc x dx =
π

2
,

I1 =

∫ ∞

0

sinc x · sinc
(x

3

)
dx =

π

2
,

...

I6 =

∫ ∞

0

sinc x · sinc
(x

3

)
· · · sinc

( x

13

)
dx =

π

2
, but

I7 =

∫ ∞

0

sinc x · sinc
(x

3

)
· · · sinc

( x

15

)
dx

=
467807924713440738696537864469

935615849440640907310521750000
π,

where the fraction is approximately 0.499999999992646 . . .

When this fact was recently verified by a researcher using a computer algebra
package, he concluded that there must be a “bug” in the software. This conclu-
sion may be too hasty, but it does raise the question: How far can we trust our
computer algebra system? Or as computer scientists often ask, “Is it a bug or a
feature?”

In this section, we will derive general formulas for this type of sinc integrals,
thereby proving that all of the above evaluations are in fact correct. Thus, this is
a somewhat cautionary example for too enthusiastically inferring patterns from
symbolic or numerical computations. The material comes from [33]; additional
information can be found in [34].

2.5.1 The Basic Sinc Integral

It will turn out that the general multi-fold sinc integral can be reduced to the
integral I0, so that it makes sense to first evaluate this integral. Note that the
function sinc x is not an element of L1(R)! Thus, Lebesgue theory cannot be
applied here directly, and in fact the integral has to be interpreted correctly.
Here we use the usual interpretation

I0 =

∫ ∞

0

sinc x dx = lim
a→∞

∫ a

0

sinc x dx.
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Thus we interpret it as an improper Riemann integral, or at best as the limit of
Lebesgue integrals.

Of course, Maple and Mathematica directly evaluate I0 = π/2, but this is
not helpful for those who demand understanding or a proof. Where does this
evaluation come from? Peering behind the covers, we find that Maple knows∫ a

0

sinc x dx = Si(a) → π

2
for a →∞.

However, this just shifts the problem to another level, since Si equals the integral
by definition. We will now give several proofs of this identity: One will be short
(and incomplete), one will be wrong, and one will be constructive!

For the first proof we just remember the Jordan theorem in Section 2.2.2,
which directly implies that

lim
a→∞

∫ a

−a

sinc(πx) eixt dx =
1

2

(
χ(−π,π)(t+) + χ(−π,π)(t−)

)
,

so that t = 0 gives the desired evaluation. However, this is only a proof modulo
the Jordan theorem. A direct proof would still be preferable.

The second “proof” is not a proof, just an idea: Write the sinc function as
an inner integral and then use Fubini. Writing 1/x =

∫∞
0

e−tx dt, we would have
to use Fubini on the function g(t, x) = e−tx sin x on R× R. The double integral
that results from exchanging the integration order does, in fact, give∫ ∞

0

∫ ∞

0

e−tx sin x dx dt =

∫ ∞

0

1

1 + t2
dt =

π

2
.

However, this exchange is not allowed, since the integrand is not in L1(R2).
But this idea can now be made into a proof which is valid and constructive.

If g is not L1 on R2, then we just have to restrict the domain of g at first. Now
Fubini is applicable in∫ a

0

sinc x dx =

∫ a

0

∫ ∞

0

e−xt sin x dt dx

=

∫ ∞

0

∫ a

0

e−xt sin x dx dt

=

∫ ∞

0

1

1 + t2
[
1− e−at(t sin a + cos a)

]
dt,

=
π

2
−

∫ ∞

0

e−at

1 + t2
(t sin a + cos a) dt,
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and the final integral goes to 0 for a → ∞ as follows by elementary estimates
(see [26]).

Another constructive method to evaluate the sinc integral is given in Item
26 in the Exercises at the end of this chapter.

2.5.2 Iterated Sinc Integrals

Now let n ≥ 1 and a0, a1, · · · , an be positive reals. Our goal is to find inequalities
(explicit formulas will be given in the exercises) for the integral

τ =

∫ ∞

0

n∏

k=0

sinc(ak x) dx,

which in particular explain the behavior of the integrals In. For simplicity and
without loss, we can assume that a0 = 1.

Theorem 2.5.1 Let s =
∑n

k=1 ak. If s ≤ 1, then τ = π/2; if s > 1, then
τ < π/2.

Proof. Let τ(x) =
∏n

k=0 sinc(ak x). Note that sinc(ak x) = f̂k(x) with fk =
(1/(2ak)) χ[−ak,ak]. Thus by the convolution theorem, τ(x) = (f0 ∗ · · · ∗ fn)̂ (x),
and by the inversion theorem,

∫ ∞

−∞
τ(x) dx = 2π (f0 ∗ · · · ∗ fn)(0) = 2π

1

2

∫ 1

−1

(f1 ∗ · · · ∗ fn)(u) du. (2.5.25)

Now since the support of fk equals [−ak, ak], the support of (f1 ∗ · · · ∗ fn)
equals [−s, s]. If s ≤ 1, then

∫ 1

−1

(f1 ∗ · · · ∗ fn)(u) du =

∫ ∞

−∞
(f1 ∗ · · · ∗ fn)(u) du

= (f1 ∗ · · · ∗ fn)̂ (0) =
n∏

k=1

sinc(ak 0) = 1,

and
∫∞
−∞ τ(x) dx = π follows. If, on the other hand, s > 1, then the inter-

val [−1, 1] is strictly inside the support of (f1 ∗ · · · ∗ fn). Since (f1 ∗ · · · ∗ fn) is
strictly positive in the interior of its support, we get

∫ 1

−1

(f1 ∗ · · · ∗ fn)(x) dx <

∫ ∞

−∞
(f1 ∗ · · · ∗ fn)(x) dx = 1,
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and
∫∞
−∞ τ(x) dx < π follows. 2

This theorem explains why the values of In suddenly drop below π/2 at n = 7
and not before: We have 1/3 + 1/5 + · · ·+ 1/13 < 1; however, 1/3 + 1/5 + · · ·+
1/13 + 1/15 > 1.

A geometric interpretation of this behavior can also be given. Consider the
polyhedra

P = {(x1, · · · , xn) : −1 ≤
n∑

k=1

xk ≤ 1, −ak ≤ xk ≤ ak for k = 1, · · · , n},

Q = {(x1, · · · , xn) : −1 ≤
n∑

k=1

akxk ≤ 1, −1 ≤ xk ≤ 1 for k = 1, · · · , n},

H = {(x1, · · · , xn) : −1 ≤ xk ≤ 1 for k = 1, · · · , n}.

Then by formula (2.5.25),

τ =
π

2n a1 · · · an

∫ min(1,s)

0

(
χ[−a1,a1] ∗ · · · ∗ χ[−an,an]

)
(x) dx

=
π

2

Vol(P )

2n a1 · · · an

=
π

2

Vol(Q)

Vol(H)
.

Thus the value of τ drops below π/2 precisely when the constraint −1 ≤∑
akxk ≤ 1 becomes active and “bites” into the hypercube H.
Of course, the same methods will also work for infinite products. Consider

the function

C(x) =
∞∏

n=1

cos
(x

n

)

which is continuous since the product is absolutely convergent. We are interested
in the integral µ =

∫∞
0

C(x) dx. High precision numerical evaluation of this
highly oscillatory integral is possible, but by no means straightforward. We get

∫ ∞

0

C(x) dx ≈ 0.785380557298632873492583011467332524761,

while π/4 ≈ 0.785398 only differs in the fifth significant place. Can this numer-
ical evaluation µ < π/4 be confirmed symbolically? Indeed it can, by reduction
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to a sinc integral of the above type, only this time with an infinite product.
Recall the sine product (1.2.11) and note that a corresponding product for the
cosine can be derived:

sin(x) = x

∞∏
n=1

(
1− x2

π2 n2

)
, cos(x) =

∞∏

k=0

(
1− 4x2

π2 (2k + 1)2

)
.

Using this result, and exchanging the order of multiplication, we obtain

C(x) =
∞∏

n=1

∞∏

k=0

(
1− 4x2

π2 n2 (2k + 1)2

)
=

∞∏

k=0

sinc

(
2x

2k + 1

)
.

Now apply the theorem to get that

µ =

∫ ∞

0

C(x) dx = lim
N→∞

∫ ∞

0

N∏

k=0

sinc

(
2x

2k + 1

)
dx <

π

4
.

This remarkable observation was made by Bernard Mares, then 17, and led
to the entire development that we have given of the iterated sinc integrals. More
examples are given in the Exercises. There is an interesting connection with
random harmonic series in [192].

2.6 Korovkin’s Three Function Theorems

In 1953, Pavel Korovkin [153] provided an approach to uniform approximation
results that is especially well suited to computational assistance and discovery.
While the result can be given much more generally, we limit ourselves to the two
most basic cases.

In what follows, by ι we denote the identity function t 7→ t; by C[0, 1] we
denote continuous functions on the unit interval; and by ⇒ we denote uniform
convergence (i.e., in the supremum norm). The interval [0, 1] can easily be
replaced by any finite interval [a, b].

Recall that an operator between continuous function spaces is positive if
it maps nonnegative functions to nonnegative functions (when linear, this is
necessarily a monotone and bounded linear operator). The motivating example
is
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Example 2.6.1 Bernstein operators.

For n in N, let Bn(f) be defined by

Bn(f)(t) =
n∑

k=0

f

(
k

n

)(
n

k

)
tk (1− t)n−k . (2.6.26)

It is clear that the Bernstein operators are linear and positive on C[0, 1] and
indeed take values which are polynomials. 2

Theorem 2.6.2 (First Korovkin three function theorem). Let Ln be a
sequence of positive linear operators from C[0, 1] to C[0, 1]. Suppose that

Ln(1) ⇒n 1, Ln(ι) ⇒n ι, Ln(ι2) ⇒n ι2.

Then
Ln(f) ⇒n f

as n →∞ for all f in C[0, 1].

Proof. The hypotheses imply that Ln(q) ⇒n q for all quadratic q. Fix f in
C[0, 1], x in [0, 1], and ε > 0. We claim that one can find a quadratic qε

x with
f ≤ qε

x and f(x) + ε ≥ qε
x. Thus

Ln(f) ≤ Ln (qε
x) ⇒n qε

x ≤ f(x) + ε.

A compactness argument completes the proof. The details are left for the
reader as Exercise 33. 2

Corollary 2.6.3 (Stone-Weierstrass). The Bernstein polynomials are uni-
formly dense in C[0, 1].

Proof. We check by hand or in a computer algebra system that Bn(1) = 1,
Bn(ι) = ι, and slightly more elaborately, Bn(ι2) = ι2 + 1

n
(ι− ι2) ⇒n ι2. 2

In the periodic case, the role of t and t2 is taken by sin and cos, as the second
Korovkin theorem shows.
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Theorem 2.6.4 (Second Korovkin three function theorem). Let Ln be a
sequence of positive linear operators from C(T) to C(T). Suppose that

Ln(1) ⇒n 1, Ln(sin) ⇒n sin, Ln(cos) ⇒n cos .

Then
Ln(f) ⇒n f

as n →∞ for all f in C(T).

The great virtue of the Korovkin approach is that it provides us with a well-
formed program. We illustrate with the second theorem. For any kernel (Kn), we
may induce a sequence of linear operators Kn(f) = Kn ∗ f and must answer two
questions: (i) Is each Kn positive? (ii) Does Kn(f) ⇒n f for the three functions
f = 1, sin, cos? The first is usually easy to answer; the second is frequently a
direct computation.

Example 2.6.5 Dirichlet and Fejér Operators.

We revisit the uniform convergence properties of the Dirichlet and Fejér kernels
from Section 2.3.3.

1. The Dirichlet kernel induces the operator

Dn(f) = Dn ∗ f

where Dn = sin ((n + 1/2)t) / sin (t/2). This is quite easily seen not to
be positive. This is a good thing, since we know that Dn(f) might not
converge uniformly to f , for f in C(T).

2. The Fejér kernel induces the operator

Fn(f) = Fn ∗ f

where Fn = sin2 ((n + 1)/2)t) /[(n + 1) sin2 (t/2)] ≥ 0. Thus, to recover
Fejér’s theorem on the uniform convergence of the Cesàro averages, it suf-
fices to compute

Fn(1) = 1, Fn(sin) =
n

n + 1
sin, Fn(cos) =

n

n + 1
cos . 2
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2.7 Commentary and Additional Examples

1. An error function evaluation. (Monthly Problem 11000, Mar. 2003)
[154].

(a) Work out the ordinary generating function of
(
2n
n

)
, and so evaluate

∑
n+m=N

(
2n

n

)(
2m

m

)
.

(b) Evaluate ∫ π
2

0

cos2n (x) sin2m (x) dx.

(c) Recall the error function, erf(x) = (2/
√

π)
∫ x

0
exp (−t2) dt, and show

for a > 0 that

a

∫ π
2

0

erf
(√

a cos x
)
erf

(√
a sin x

)
sin (2 x) dx = e−a + a− 1.

(d) The previous evaluation can be viewed as an inner product of the
functions erf (

√
a sin x) sin x and erf (

√
a cos x) cos x. Determine that

∫ π/2

0

erf2
(√

a cos x
)
cos2 (x) dx

=
∞∑

N=0

(−a
4

)N+1
(8N + 12)

(
2 N
N

)

(N + 2)!
F

(
1

2
,−N,−N − 1

2
;
3

2
,−N +

1

2
;−1

)

=
1

2 π
− 2

∫ 1

0

e−1/2 a(1+x2)

1 + x2

{
I0

(
1

2
a

(
1 + x2

))− I1

(
1

2
a

(
1 + x2

))}
dx.

2. Failure of Fubini. Evaluate these integrals:

(a) ∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2dx dy = −π

4

and ∫ 1

0

∫ 1

0

x2 − y2

(x2 + y2)2dy dx =
π

4
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(b)

∫ 1

0

∫ ∞

1

(
e−xy − 2 e−2 xy

)
dy dx−

∫ ∞

1

∫ 1

0

(
e−xy − 2 e−2 xy

)
dx dy = ln 2

(c)
∫ ∞

0

∫ ∞

0

4 xy − x2 − y2

(x + y)4 dy dx =

∫ ∞

0

∫ ∞

0

4 xy − x2 − y2

(x + y)4 dx dy = 0

but, for all m, c > 0
∫ mc

0

∫ c

0

4 xy − x2 − y2

(x + y)4 dx dy =
m

(1 + m)2 6→ 0,

as c →∞.

In each case, explain why they differ without violating any known theorem.

3. Failure of l’Hôpital’s rule. Evaluate these limits:

Let f(x) = x + cos (x) sin (x) and g(x) = esin(x) (x + cos (x) sin (x)).

Then limx→∞ f(x)/g(x) does not exist although limx→∞ f ′(x)/g′(x) = 0.
This is a caution against carelessly dividing by zero!

4. Various Fourier series evaluations.

(a) Compute the Fourier series of t/2, |t|, t2, and (t3−π2 t)/3 on [−π, π].

(b) Plot the 6th and 12th Fourier polynomials against the function in
each case.

(c) Compute enough Fourier coefficients of sin (x3) on [−π, π] to be con-
vinced of Parseval’s equation.

(d) Compute the Fourier series of t2 and (t3 − π2 t)/3 on [0, 2 π].

(e) Use Parseval’s equation with (t3 − π2 t)/3 to evaluate ζ(6). Then
apply Parseval to t4/4.

(f) Show that ∫ π/2

0

log (2 sin(t/2)) dt = −G,

where G is Catalan’s constant.
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(g) Show that for a > 0,

cos (ax) =
sin (π a)

π a
− 2

sin (π a) a cos (x)

(a2 − 1) π
+ 2

sin (π a) a cos (2 x)

(a2 − 4) π

− 2
sin (π a) a cos (3 x)

(a2 − 9) π
+ · · · . (2.7.27)

Similarly evaluate the Fourier series for exp(ax).

(h) Substitute x = π in (2.7.27) to obtain the partial fraction expansion
for cot (compare the first example in Section 2.3.1) and integrate to
recover the product formula for sin (justifying all steps).

(i) Evaluate
∑

n≥0 1/(4n2 − 1).

5. Two applications of Parseval’s equation. Use Parseval’s equation in
L2(R) to evaluate

∫ ∞

−∞

sin2(t)

t2
dt = π and

∫ ∞

−∞

sin4(t)

t4
dt =

2π

3
.

See also Exercise 28.

6. Lebesgue’s function. An example of a continuous function with diver-
gent Fourier series.

Construction. We follow Stromberg, page 557, and let ak = 2
∑k

j=1 j! for
k ≥ 0 and define

fn(x) =
n∑

k=1

sin(ak|x|)
k

χk(|x|)

on [−π, π], where χk is the characteristic function of [π/ak, π/ak−1], and
extend f by 2π-periodicity onto R. Then f(x) = limn→∞ fn(x) is continu-
ous and the Fourier series is uniformly convergent on [δ, 2π − δ] for δ > 0,
but sak

(f, 0) →∞ for k →∞.

Convergence on [δ, 2π − δ]. This is easy since f = fn on this interval for
large n, so that the “Riemann localization principle” for Fourier series can
be used: If f1(t) = f2(t) for every t in some nonvoid open interval I, then
|sn(f1, t)− sn(f2, t)| → 0 for every t ∈ I.

Divergence at 0. The divergence estimate comes as follows:
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Figure 2.7: Approximation f3 to Lebesgue’s function.

(a) We start with Dirichlet’s kernel: It can be proved that the n-th partial
sum behaves like

sn(f, 0) =
2

π

∫ π

0

f(t)
sin(nt)

t
dt + εn

where εn → 0.

(b) We estimate the first part of the integral as

∣∣∣∣∣
∫ π/ak

0

f(t)
sin(akt)

t
dt

∣∣∣∣∣ ≤
π

k + 1
,

since |(sin x)/x| ≤ 1 and |f(t)| ≤ 1/(k + 1).
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(c) We estimate the second part of the integral via

2

∫ π/ak−1

π/ak

f(t)
sin(akt)

t
dt +

1

k

∫ π/ak−1

π/ak

cos(2 akt)

t
dt = k!

ln 2

k
, (2.7.28)

and the second term on the left, say Ik, is no bigger than 1
2πk

on using
the Bonnet second mean value theorem to write

|Ik| =

∣∣∣∣
ak

kπ

∫ ψ

π/ak

cos(2 akt) dt

∣∣∣∣ ≤
1

2kπ
,

for some ak−1

π
≤ ψ ≤ ak

π
.

(d) We estimate the third part of the integral as
∣∣∣∣∣
∫ π

π/ak−1

f(t)
sin(akt)

t
dt

∣∣∣∣∣ ≤
ak−1

π

∣∣∣∣∣
∫ ψ

π/ak−1

f(t) sin(akt) dt

∣∣∣∣∣

≤ ak−1

π

(∣∣∣∣f(t)
cos(akt)

ak

∣∣∣∣
ψ

π/ak−1

+

∣∣∣∣
∫ π

ψ

f ′(t)
cos(akt)

ak

dt

∣∣∣∣
)

≤ ak−1

ak

(
1

π
+ ak−1

)
→ 0,

on using the mean value theorem again, and then applying integration
by parts with the estimates that |f(t)| ≤ 1, |f ′(t)| ≤ ak−1. Thus, the
dominant term is the first integral in (2.7.28) and sak

(f, 0) →∞.

7. Nonuniqueness of Fourier series. Can a trigonometric series converge
a.e. on R to a function ϕ ∈ L1(T ) and yet not be the Fourier series of
ϕ? This question was first answered in the affirmative with ϕ = 0 in 1916
by the Russian analyst D. E. Menshow. His counterexample involves the
Cantor set. For more details, see [203], from which the above text was
cited.

8. Nowhere differentiable continuous functions. The first and most
famous example of a continuous, nowhere differentiable function was con-
structed by K. Weierstrass in 1872. (Tradition has it that Bolzano and
Riemann constructed such examples before Weierstrass, but their exam-
ples did not become widely known.) Weierstrass’s example was given in
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the form of a trigonometric series. We state it here as a series on [0, 1],
not on [−π, π] or [0, 2π] as before, because this will simplify matters later;
we analogously write f ∈ L1(0, 1), and formulas and theorems on Fourier
series are easily converted to this case. Weierstrass’s example was

Ca,b(t) =
∞∑

n=0

an cos(bn 2πt),

with |a| < 1 and integral b > 1. Weierstrass proved that Ca,b is nowhere
differentiable when b ∈ 2N + 1 and ab > 1 + 3π/2. This result settled,
once and for all, the question of whether such functions could exist (at
the beginning of the 19th century, Ampére “proved” that every continuous
function must be differentiable at some point). Some questions were left
open, however: It is clear that Ca,b is differentiable when |a| b < 1, since the
series is then termwise differentiable. But what happens for |a| b between
1 and 1 + 3π/2? This question gave several mathematicians a headache,
until in 1916, G. H. Hardy proved that both Ca,b and the corresponding
sine series

Sa,b(t) =
∞∑

n=0

an sin(bn 2πt)

are nowhere differentiable whenever b is a real greater than 1, and ab > 1.
In his paper, Hardy first treated the case when b ∈ N, i.e., when the
functions are given by their Fourier series, and only afterwards treated the
general case of arbitrary real b. Hardy’s methods were not easy, not even in
the Fourier case (where he used the Poisson kernel, among other things).
In the ensuing years, several other, simpler proofs have been published.
In the middle of the 20th century, G. Freud and J.-P. Kahane gave con-
ditions for the differentiability of lacunary Fourier series (where nonzero
Fourier coefficients are spaced far apart), from which the nondifferentiabil-
ity of Weierstrass’s function follows. Another approach to the Weierstrass
functions uses functional equations.

Prove:

(a) The Weierstrass sine series f = Sa,2 with b = 2 satisfies the system of
two functional equations

f

(
t

2

)
= a f(t) + sin(t), f

(
t + 1

2

)
= a f(t)− sin(t) (2.7.29)
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for every t ∈ [0, 1]. The cosine series Sa,2 satisfies an analogous sys-
tem.

(b) The Weierstrass function is the only bounded solution of the respec-
tive system on [0, 1].

Hint for (b): Use Banach’s fixed point theorem.

9. Replicative functions. Let D be an interval containing (0, 1). A function
f : D → C is called replicative (on D) if it satisfies the functional equation

1

p

p−1∑

k=0

f

(
t + k

p

)
= u(p) f(t) for all t ∈ D and p ∈ N, (2.7.30)

with a u : N → C (which turns out to be unique if f 6≡ 0). This notion was
introduced (with more generality) by D. E. Knuth in [152]. Examples are
the cotangent (cot(πt) is replicative on (0, 1) with u(p) = 1), the Bernoulli
polynomials (Bm(t) is replicative on R with u(p) = 1/pm), and derivatives
of the Psi function (the m-th derivative of Ψ = Γ′/Γ is replicative on
R+ with u(p) = pm). Functions that are replicative and 1-periodic have
multiplicative Fourier coefficients.

Theorem 2.7.1 (a) Let f : D → C, f 6≡ 0, be replicative on D with
u(p). Then u is necessarily multiplicative, i.e., u(mn) = u(m) · u(n)
for all m,n ∈ N.

(b) Let f ∈ L1(0, 1) be replicative on (0, 1) with a sequence u(p). Then

f̂mn = u(n)f̂m.

This implies: If u ≡ 1, then f(t) = f̂0. If u 6≡ 1, then

f(t) ∼ f̂−1

−1∑
n=−∞

u(−n) e2πint + f̂1

∞∑
n=1

u(n) e2πint.

(c) Let u be multiplicative and assume that f(t) = L
∑∞

n=1 u(n) e2πint is
pointwise convergent on [0, 1], where L is a linear summation method.
Then f is replicative on [0, 1].

Part (c) of this theorem makes it easy to construct many different examples
of replicative functions on [0, 1]. Verify the following Fourier series:
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(a)
∑

n−2 sin(2πnt) = −2π
∫ t

0
ln(2 sin(πx)) dx on [0, 1],∑

n−2 cos(2πnt) = B2(t) on [0, 1].

(b)
∑

n−1 sin(2πnt) = B1(t) on (0, 1) and = 0 on 0, 1,∑
n−1 cos(2πnt) = − ln(2 sin(πt)) on (0, 1) and = ∞ on 0, 1.

(c) C1
∑

sin(2πnt) = 1
2
cot(πt) on (0, 1) and = 0 on 0, 1,

C1
∑

cos(2πnt) = −1
2

on (0, 1) and = ∞ on 0, 1,
where C1 stands for Cesàro summation.

(d) A
∑

n sin(2πnt) = 0 on [0, 1],
A

∑
n cos(2πnt) = −1/(4 sin2(πt)) on (0, 1) and = ∞ on 0, 1,

where A stands for Abel summation.

(e)
∑∞

n=0 an sin(pn 2πt) = Sa,p(t) on [0, 1],∑∞
n=0 an cos(pn 2πt) = Ca,p(t) on [0, 1],

for p a prime, i.e., the nowhere differentiable Weierstrass functions
can be replicative.

10. Conditions for integrability.

(a) As in Theorem 2.3.7, it is often useful to decide whether f̂ ∈ L1(R) for

a given f ∈ L1(R), without having to explicitly compute f̂ . The usual
conditions assume differentiability properties of f , since smoothness
of f translates into shrinkage of f̂ . Thus, f ∈ C2(R) is sufficient

for f̂ ∈ L1(R). However, this condition does not cover the Fejér
kernel via g(x) = max{1− |x|, 0}, for example. A stronger condition,
which is good for functions with bounded support, is given in the next
theorem.

Theorem 2.7.2 Let f be an absolutely continuous function on the
real line with compact support and let f ′ be of bounded total variation
on R, i.e., V (f ′) < ∞. Then f̂ ∈ L1(R) and

‖f̂‖1 ≤ 4
√

V (f ′) ‖f‖1. (2.7.31)

This theorem presents another experimental challenge: Is the con-
stant “4” appearing there best possible? The answer is not known.
Nonsystematic experimentation has found no value for the constant
greater than π, which is achieved for the Fejér kernel. It is also not
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known if the “compact support” condition in the theorem is really
needed.

Perform a systematic experiment on Theorem 2.7.2, in analogy to the
experimentation for the uncertainty principle described in Section 5.2
of the first volume.

(b) A quite different condition is due to Chandrasekharan: If f ∈ L1(R),

continuous at 0, and satisfies f̂ ≥ 0 on R, then f̂ ∈ L1(R). The dis-

advantage of this condition is that it uses f̂ explicitly. It is applicable,
however, to both the Fejér and the Poisson kernel.

11. More kernels. For each of the following kernels, decide whether (respec-
tively, for which parameters) it is an approximate identity in L1(R). Note
that sometimes a version of Theorem 2.3.7 with weakened assumptions
(allowing more variety in the kernels) is needed.

(a) The de la Vallée-Poussin kernel V n
m, depending on two integer pa-

rameters m,n with n > m, is defined by V n
m(t) =

∑n+m
k=−(n+m) an

m,k eikt,
where

an
m,k =





1, if |k| ≤ n−m,
n+m+1−|k|

2m+1
, if n−m ≤ |k| ≤ n + m,

0, otherwise.

Hint: Let m,n tend to infinity such that n/m → λ.

(b) For α > 0, the (C,α)-kernel F
(α)
n is defined as F

(α)
n (t) =

∑n
k=−n a

(α)
n,k eikt

where

a
(α)
n,k =

{
Γ(n−|k|+α+1)Γ(n+1)
Γ(n−|k|+1)Γ(n+α+1)

, if |k| ≤ n + 1,

0, otherwise.

(c) For parameters α0, · · · , αp ∈ R with α0 + · · ·+ αp = 1, the Blackman

kernel H
(α0,··· ,αp)
n is defined by H

(α0,··· ,αp)
n (t) =

∑n
k=−n h

(α0,··· ,αp)
n,k eikt,

where

h
(α0,··· ,αp)
n,k =

p∑
j=0

αj cos(jktn),

with tn = 2π/(2n + 1).
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(d) The Fejér-Korovkin kernel FKn is defined as

FKn(t) =





2 sin2(π/(n + 2))

n + 2

[
cos((n + 2)t/2)

cos(π/(n + 2))− cos t

]2

,

(n + 2)/2,

depending on whether t 6= ±π/(n+2)+2jπ or t = ±π/(n+2)+2jπ,

respectively. It can be written in the form FKn(t) =
n∑

k=−n

an,k eikt

where

an,k =
(n− |k|+ 3) sin |k|+1

n+2
π − (n− |k|+ 1) sin |k|−1

n+2
π

2(n + 2) sin(π/(n + 2))
.

(e) Finally, the Jackson kernel Jn is a rescaled version of the square of
the Fejér kernel, namely

Jn(t) =
3

n(2n2 + 1)

[
sin(nt/2)

sin(t/2)

]4

.

12. The Haar basis. As we mentioned in the text, the trigonometric func-
tions eint constitute an orthogonal basis for the space L2(T), so that L2-
statements follow from general Hilbert space theory. Bases other than
the trigonometric are, of course, conceivable and in fact are used for
the analysis of L2-functions. Since about 15 years ago, certain bases of
L2(R), called wavelet bases, have found widespread use in signal analy-
sis. Such bases are constructed as follows. Take a ψ ∈ L2(R) and de-
fine ψj,n(t) = 2n/2 ψ(2n t − j). Then ψ is called an orthogonal wavelet if
{ψj,n : j, n ∈ Z} is an orthonormal basis of L2(R).

Show: ψ = χ[0,1/2)−χ[1/2,1) is an orthogonal wavelet. The associated basis
{ψj,n} is called the Haar basis of L2(R).

13. The Schauder basis. The foundation of the theory of bases in Banach
spaces was laid by J. Schauder in the 1930s. A sequence (xn) in a Banach
space B is called a basis of B if for every x ∈ B, there exists a unique
sequence of scalars (αn) with

x =
∞∑

n=1

αn xn in B.
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The trigonometric functions are not a basis for L1(T) or for C(T), although
their span is dense in these spaces. The standard example of a basis for
the space C[0, 1] is also due to Schauder (although G. Faber had used the
same basis before Schauder, in a different analytical guise). This Faber-
Schauder basis is the system of continuous functions {σ0,0, σ1,0} ∪ {σi,n :
n ∈ N, i = 0, · · · , 2n−1 − 1}, where σ0,0(t) = 1 − t, σ1,0(t) = t, and the
function σi,n is the linear interpolation of the points

(0, 0),

(
i

2n−1
, 0

)
,

(
2i + 1

2n
, 1

)
,

(
i + 1

2n−1
, 0

)
, (1, 0).

This system is a basis of the space C[0, 1], more precisely: Every continuous
function f : [0, 1] → R has a unique, uniformly convergent expansion of
the form

f(x) = γ0,0(f) σ0,0(x) + γ1,0(f) σ1,0(x) +
∞∑

n=1

2n−1−1∑
i=0

γi,n(f) σi,n(x),

where the coefficients γi,n(f) are given by γ0,0(f) = f(0), γ1,0(f) = f(1),
and

γi,n(f) = f

(
2i + 1

2n

)
− 1

2
f

(
i

2n−1

)
− 1

2
f

(
i + 1

2n−1

)
.

Knowing the Schauder basis expansion of a continuous function f can be
useful in the analysis of f . For example, Faber proved in 1910 a criterion
for differentiability of f in terms of its Schauder coefficients: If f ′(x0) ∈ R
exists for some x0 ∈ [0, 1], then

lim
n→∞

2n ·min{|γi,n(f)| : i = 0, · · · , 2n−1 − 1} = 0. (2.7.32)

Interestingly, this condition can be used to prove nondifferentiability of the
Weierstrass functions in an elementary way. Prove:

(a) The Schauder coefficients of the Weierstrass sine series f = Sa,2 satisfy
the recursion

γ0,1(f) = 0,

γi,n+1(f) = aγi,n(f) + γi,n(sin) for n ∈ N, i = 0, · · · , 2n−1 − 1,

γi,n+1(f) = aγi−2n−1,n(f)−γi−2n−1,n(sin) for n ∈ N, i = 2n−1, · · · , 2n − 1.
Hint: Use the functional equations (2.7.29).
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(b) Faber’s condition (2.7.32) is not satisfied for f = Sa,2. Thus this
function is nowhere differentiable.

It is instructive to experiment with the recursion in (a): to plot the
Schauder coefficients and Schauder approximations for the Weierstrass and
for other functions that satisfy similar functional equations. Details of this
method can be found in [121] and [122].

14. Riemann-Lebesgue lemma. Deduce the following from the Riemann-
Lebesgue lemma for every Lebesgue integrable function f .

(a) For any real σ(t)

lim
t→∞

∫

R

f(x) cos2 (tx + σ(t)) dx =
1

2

∫

R

f(x) dx.

(b) The coefficients f̂(n) → 0 as n →∞.

Conclude that the trigonometric series
∑

n>1 sin (nt) / log (n) is not the
Fourier series of any integrable function.

When an is convex, decreasing with limit zero and with
∑

n>0 an/n = ∞, it
is in fact the case that

∑
n>0 an cos (nt) is a Fourier series of an integrable

function, but
∑

n>0 an sin (nt) is not [203, Chapter 8].

15. A few Fourier transforms. We have already seen many examples of
Fourier transforms and their Laplace transform variants. The specializa-
tion to the Mellin transform is explored in the next chapter.

(a) Show that the L2-Fourier transform of (sin t2)/t is the expression
iπ

(
S(x/

√
2π)− C(x/

√
2π)

)
, where the functions C and S are the

Fresnel integrals,

C(x) =

∫ x

0

cos(
π

2
t2) dt, S(x) =

∫ x

0

sin(
π

2
t2) dt.

Determine the Fourier transform of cos(t2)/t. Find “sensible” Fourier
transforms for sin(t2) and cos(t2), even though these functions are
neither in L1(R) nor in L2(R).
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(b) Show that for a > 0, the Fourier transform of |t| exp(−a|t|) is the
function 2 (a2 − x2) / (a2 + x2)

2
.

(c) Find the transform of 1/ (a2 + t2) and of 1/tη (for suitable η, and in
a suitable sense).

(d) Find all square-integrable solutions to f̂/
√

2π = f (the fixed points of
the normalized Fourier transform). Then experiment with the orbit
of f 7→ f̂/

√
2π for various choices f0.

16. The isoperimetric inequality. The ancient Greek geometers knew al-
ready that a circle with given perimeter encloses a larger area than any
polygon with the same perimeter. In 1841 Steiner extended this result
to simple closed plane curves. Here we will sketch a Fourier series proof
(due to Hurwitz), for simplicity restricted to (piecewise) C1-curves. Thus,
assume that we have a simple, closed C1-curve (x(t), y(t)) in R2 of length∫ π

−π
(x′(s)2 + y′(s)2)1/2 ds = 2π. Without loss of generality, we can assume

that x′(s)2 + y′(s)2 = 1 for all s. We wish to minimize the area inside the
curve, given by

A =

∫ π

−π

x(s) y′(s) ds.

Show: A ≥ π with equality if and only if (x(t)−x̂0)
2+(y(t)−ŷ0)

2 = 1. This
is the isoperimetric inequality. Hint: Substitute Fourier series, transfer
the formulas for derivatives from Section 2.4.2 to the L1(T)-case, and use
Parseval’s equation.

17. The maximum principle. In like fashion, employ Poisson’s kernel to
heuristically deduce that the maximum principle discussed briefly in Sec-
tion 6.5 applies.

18. The heat equation. The one-dimensional heat equation

∂φ

∂t
(x, t) =

π

4i

∂2φ

∂x2
(x, t),

is solved by the general theta function
∑

n∈Z xn exp(−πi tn2). More use-
fully, when G : R 7→ C is continuous and bounded we may solve the
equation

∂φ

∂t
(x, t) = K

∂2φ

∂x2
(x, t),
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with boundary condition φ(x, t) → G(x) as t → 0+, by the infinitely
differentiable function

G ∗ E1/
√

2Kt (x) =
1

2
√

πKt

∫

R

G(x− y) exp(−y2/2Kt) dy,

for x in R and t > 0.

19. The easiest three-dimensional Watson integral. We start with the
easiest integral to evaluate. Let

W3(w) =

∫ π

0

∫ π

0

∫ π

0

1

1− w cos (x) cos (y) cos (z)
dx dy dz,

for suitable w > 0.

(a) Prove that

W3(1) =

∫ π

0

∫ π

0

∫ π

0

1

1− cos (x) cos (y) cos (z)
dx dy dz

=
1

4
Γ4

(
1

4

)
= 4 π K

(
1√
2

)

via the binomial expansion and [44, Exercise 14, page 188].

(b) More generally,

W3((2kk′)2) = π3 F
(
1/2, 1/2, 1/2; 1, 1; 4 k2

(
1− k2

))
= 4π K2 (k) .

20. The harder three-dimensional Watson integrals. We now describe
results largely in Joyce and Zucker [146, 147], where more background
can also be found. The following integral arises in Gaussian and spherical
models of ferromagnetism and in the theory of random walks.

(a) One of the most impressive closed-form evaluations of a multiple in-
tegral is Watson’s

W1 =

∫ π

−π

∫ π

−π

∫ π

−π

1

3− cos (x)− cos (y)− cos (z)
dx dy dz

=
1

96
(
√

3− 1) Γ2

(
1

24

)
Γ2

(
11

24

)
(2.7.33)

= 4 π
(
18 + 12

√
2− 10

√
3− 7

√
6
)

K2 (k6) ,
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where k6 =
(
2−√3

) (√
3−√2

)
is the sixth singular value of Sec-

tion 4.2. Note that W1 = π3
∫∞

0
exp(−3t) I3

0 (t) dt allows for efficient
computation [146] where the Bessel function I0(t) has been written
as (1/π)

∫ π

0
exp(t cos(θ)) dθ. The evaluation (2.7.33), in its original

form, is due to Watson and is really a tour de force. In the next
exercise we describe a refined and simplified evaluation due to Joyce
and Zucker [147].

(b) Similarly, the integral

W2 =

∫ π

0

∫ π

0

∫ π

0

dx dy dz

3− cos (x) cos (y)− cos (y) cos (z)− cos (z) cos (x)

=
√

3 π K2
(
sin

( π

12

))
=

21/3

8 π
β2

(
1

3
,
1

3

)
, (2.7.34)

where sin (π/12) = k3 is the third singular value, again as in Section
4.2. Indeed, as we shall see in Exercise 21, (2.7.34) is easier and can
be derived on the way to (2.7.33).

(c) The evaluation (2.7.34) then implies that

1
π

W2 =
∫ π

0

∫ π

0

dy dz√
9− 8 cos (y) cos (z)− cos2 (y)− cos2 (z) + cos2 (y) cos2 (z)

on performing the innermost integration carefully.

(d) The expression inside the square root factors as (cos x cos y + cos x +
cos y − 3)(cos x cos y− cos x− cos y− 3). Upon substituting s = x/2,
and t = y/2, one obtains

∫ π
2

0

∫ π
2

0

dy dx√(
1− sin2 (x) sin2 (y)

)
(1− cos2 (x) cos2 (y))

=
1

4π

∞∑
m=0

∞∑
n=0

β3

(
n +

1

2
, m +

1

2

)(
m + n

n

)
=
√

3 K2
(
sin

( π

12

))
.

21. More about the Watson integrals.
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(a) For a > 1, b > 1, show that

1

2

∫ π

0

1√
(a + cos(y)) (b− cos(y))

dy =
K

(√
2(b+a)

(1+b)(1+a)

)
√

(1 + b) (1 + a)

=

∫ 1/2 π

0

1√
(1 + b) (1 + a) cos2 (t) + (1− a) (1− b) sin2 (t)

dt.

(b) A beautiful, but harder to establish, identity is that

∫ π
2

0

K

(√
c2 cos2 (s) + sin2 (s)

)
ds = K

(√
1− c

2

)
K

(√
1 + c

2

)
,

(2.7.35)

or equivalently that

∫ π
2

0

K
(√

1− (2kk′)2 cos2(θ)
)

dθ = K (k) K (k′)

with k′ =
√

1− k2. Hence,

∫ π
2

0

K

(√
1− (2kNk′N)2 cos2(θ)

)
dθ =

√
N K2 (kN) ,

where kN is the N -th singular value. This is especially pretty for
N = 1, 3, 7 so that 2 kNk′N = 1, 1/2, 1/8, respectively.

(c) Deduce that the face centered cubic (FCC) lattice for the Green’s
function evaluates as

1

π
W2 =

∫ π
2

0

K

(√
3

4
cos2 (s) + sin2 (s)

)
ds =

√
3 K2 (k3) .

(d) Correspondingly, Watson’s evaluation for the simple cubic (SC) lattice
relied on deriving

W1 =
√

2 π

∫ π

0

K

(
cos(x)− 5

2

)
dx,
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and the following extension of (2.7.35):
∫ π

2

0

K

(√
c2 cos2 (s) + d2 sin2 (s)

)
ds =

K




√
1− cd−

√
(d2 − 1) (c2 − 1)

2




× K




√
1 + cd−

√
(d2 − 1) (c2 − 1)

2


 .

(e) The generalized Watson integrals. Let

W1(w1) =
∫ π

−π

∫ π

−π

∫ π

−π

1
3− w1 (cos (x)− cos (y)− cos (z))

dx dy dz

W2(w2) =∫ π

0

∫ π

0

∫ π

0

dx dy dz

3− w2 (cos (x) cos (y)− cos (y) cos (z)− cos (z) cos (x))
.

In a beautiful study, Joyce and Zucker [147], using the sort of elliptic
and hypergeometric transformations we have explored, show fairly
directly that

W2(−w1(3 + zw1)/(1− w1)) = (1− w1)
1/2 W1(w1).

Verify that, with w1 = −1, this leads to a quite direct evaluation of
(2.7.33) from (2.7.34).

(f) It is also true that

W1 =
√

2 π

∫ π
2

0

K

(
1

2
+

1

2
sin2 (t)

)
dt.

(g) A more symmetric form. Show that
∫ π

2

0

K
(√

1− 4 k2 (1− k2) cos2 (x)
)

dx

=

∫ π
2

0

∫ π
2

0

dt dx√
cos2(t) + 4 k2(1− k2) cos2(x) sin2(t)

for 0 < k < 1.
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Hint: For (21d) consider N = 3 (c2 = 3/4) in (21c), and let a and b be
defined as a = (3− cos x) / (1 + cos x) and b = (3 + cos x) / (1− cos x) in
(21a).

22. Watson integral and Burg entropy. Consider the perturbed Burg
entropy maximization problem

v (α) = sup
p≥0
{ log (p(x1, x2, x3)) |

∫ 1

0

∫ 1

0

∫ 1

0

p(x1, x2, x3) dx1dx2dx3 = 1,

and for k = 1, 2, 3,

∫ 1

0

∫ 1

0

∫ 1

0

p(x1, x2, x3) cos (2 πxk) dx1dx2dx3 = α},

maximizing the log of a density p with given mean, and with the first
three cosine moments fixed at a parameter value 0 ≤ α < 1. It transpires
that there is a parameter value α such that below and at that value v(α)
is attained, while above it is finite but unattained. This is interesting,
because:

(a) The general method—maximizing
∫

T
log (p(t)) dt subject to a finite

number of trigonometric moments—is frequently used. In one or two
dimensions, such spectral problems are always attained when feasible.

(b) There is no easy way to see that this problem qualitatively changes
at α, but we can get an idea by considering

p (x1, x2, x3) =
1/W1

3−∑3
1 cos (2πxi)

,

and checking that this is feasible for

α = 1− 1/(3W1) ≈ 0.340537329550999142833

in terms of the first Watson integral, W1.

(c) By using Fenchel duality [61] one can show that this p is optimal.

(d) Indeed, for all α ≥ 0 the only possible optimal solution is of the form

pα (x1, x2, x3) =
1

λ0
α −

∑3
1 λi

α cos (2πxi)
,



134 CHAPTER 2. FOURIER SERIES AND INTEGRALS

for some real numbers λi
α. Note that we have four coefficients to

determine; using the four constraints we can solve for them. For
0 ≤ α ≤ α, the precise form is parameterized by the generalized
Watson integral:

pα (x1, x2, x3) =
1/W1(w)

3−∑3
1 w cos (2πxi)

,

and α = 1 − 1/(3W1(w)), as w ranges from zero to one. Note also
that W1(w) = π3

∫∞
0

I3
0 (w t) e−3t dt allows one to quickly obtain w

from α numerically. For α > α, no feasible reciprocal polynomial can
stay positive. Full details are given in [60].

23. A “momentary” recursion. Choose p ∈ N and define polynomials
qk(x) recursively by q0(x) = −1 and qn+1(x) = q′n(x)−xp−1 qn(x). Give an
explicit formula for qn(0) (and for qn(x)).

24. The limit of certain Fourier transforms. For p ∈ 2N, let fp(t) =

e−tp/p. In Figure 2.8, the functions f̂p(x) are shown for p = 2, 8, 16. The
figure suggests that there may be a limit function as p →∞. Identify this
limit function!

25. The Schilling equation. The Schilling equation is the functional equa-
tion

4q f(qt) = f(t + 1) + 2f(t) + f(t− 1) for t ∈ R

with a parameter q ∈ (0, 1). It has its origin in physics, and although it has
been studied intensively in recent years, there are still many open questions
connected with it. The main question is to find values of q for which the
Schilling equation has a nontrivial L1-solution. Discuss this question! Hint:
If an L1-function f satisfies (2.4.20), then a rescaled version of f ∗f satisfies
the Schilling equation.

26. Another way to evaluate the sinc integral. The evaluation of the
integral

∫∞
0

sin y/y dy = π/2 also follows on taking the limit, via Binet’s
mean value theorem [203, page 328], of the absolutely convergent integral

∫ ∞

0

sin y

y1+ε
dy =

π

2

sec(π
2
ε)

Γ(1 + ε)
.
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Figure 2.8: The oscillatory Fourier transforms f̂2, f̂8, f̂16.

Maple happily provides the second integral in a form which simplifies to
that we have given. A proof based on the conventional Mellin transform
follows.

(a) For 0 < ε < 1, use the Γ-function to write

∫ ∞

0

sin y

y1+ε
dy =

1

Γ(ε + 1)

∫ ∞

0

dx

∫ ∞

0

sin(x) exp(−xt)tε dt.

(b) Interchange variables and evaluate the inner integral to tε/(t2 + 1).

(c) Then use the β-function to prove

∫ ∞

0

tε

t2 + 1
dt = β

(
1

2
− 1

ε
,
1

2
− 1

ε

)
=

π

2
sec

(π

2
ε
)

.

Note: ∫ ∞

0

log2 n (s)

s2 + 1
ds = (−1)n

(π

2

)2 n+1

E2 n.
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27. An explicit formula for the sinc integrals. Assume that n ≥ 1 and
a0, a1, · · · , an > 0. For γ = (γ1, · · · , γn) ∈ {−1, 1}n define

bγ = a0 +
n∑

k=1

γk ak and εγ =
n∏

k=1

γk.

Show:

(a)
∑

γ∈{−1,1}n

εγ br
γ =

{
0, for r = 0, 1, · · · , n− 1,

2n n!
∏n

k=1 ak, for r = n,

where b0
γ = 1 even if bγ = 0. Hint: Expand both sides of ea0t

∏n
k=1(e

akt−
e−akt) =

∑
γ∈{−1,1}n εγ ebγt into a power series in t and compare coef-

ficients.

(b)
n∏

k=0

sin(akx) =
1

2n

∑

γ∈{−1,1}n

εγ cos(bγx− π
2

(n + 1)).

(c)

∫ ∞

0

n∏

k=0

sin(ak x)

x
dx =

π

2

1

2n n!

∑

γ∈{−1,1}n

εγ bn
γ sign(bγ).

(d)

∫ ∞

0

n∏

k=0

sinc(ak x) dx =
π

2

1

a0


1− 1

2n−1 n! a1 · · · an

∑

bγ<0

εγb
n
γ


.

(e) The first “bite.” If
∑n−1

k=1 ak ≤ a0 <
∑n

k=1 ak, then

∫ ∞

0

n∏

k=0

sinc(ak x) dx =
π

2

1

a0

(
1− (a1 + · · ·+ an − a0)

n

2n−1 n! a1 · · · an

)
.

28. A special sinc integral. Evaluate

∫ ∞

0

sincn(x) dx =
π

2


1 +

1

2n−2

∑

1≤r≤n
2

(−1)r

(r − 1)!

(n− 2r)n−1

(n− r)!




=
π

2n (n− 1)!

∑

0≤r≤n
2

(−1)r

(
n

r

)
(n− 2r)n−1.

In this way, confirm the results of Exercise 5.
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29. A strange cosine integral. Let C∗(x) = cos(2x)
∏∞

n=1 cos (x/n). Show
symbolically that

∫∞
0

C∗(x) dx < π/8, and show numerically that

0 <
π

8
−

∫ ∞

0

C∗(x) dx < 10−41.

This is hard to distinguish numerically from π/8; compare Exercise 39.

30. Multivariable sinc integrals. For x, y ∈ Rm we write x · y to denote
the dot product. Define the sinc space Sm,n to be the set of m× (m + n)
matrices S = (s1 s2 · · · sm+n) of column vectors in Rm such that

∫

Rm

∣∣∣∣∣
m+n∏

k=1

sinc(sk · y)

∣∣∣∣∣ dy < ∞,

and a function σ : Sm,n → R by

σ(S) =

∫

Rm

m+n∏

k=1

sinc(sk · y) dy.

Correspondingly, define the polyhedron space Pm,n to be the complete set
of m× (m+n) matrices P = (p1 p2 · · · pm+n) and a function ν : Pm,n → R
by

ν(P ) = Vol{x ∈ Rn : |pk · x| ≤ 1 for k = 1, 2, · · · ,m + n}.

(a) Note that by change of basis, for S ∈ Sm,n and P ∈ Pm,n, we have

σ(S) = |det(M)|σ(MS) and ν(P ) = |det(N)| ν(NP )

for nonsingular matrices M (m×m) and N (n× n).

(b) The following correspondence between multidimensional sinc integrals
and volumes of polyhedra can be proved with some effort (see [34]):
If n ≥ m, if A is a nonsingular (m × m)-Matrix, and if B is any
(m× n)-matrix having m of its columns linearly independent, then

σ(A|B) =
σ(Im|A−1B)

|det(A)| =
πm

2n

ν(In|(A−1B)T )

|det(A)| .
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Similarly, if n ≥ m, if C is a nonsingular (n×n)-matrix, and if D is
any (n×m)-matrix such that C−1D has m linearly independent rows,
then

ν(C|D) =
ν(In|C−1D)

|det(C)| =
2n

πm

σ(Im|(C−1D)T )

|det(C)| .

(c) Use the theorem from (b) to determine (with the use of symbolic
integration) the volume of {x ∈ R6 : |pk · x| ≤ 1, k = 1, · · · , 11},
where pi is the i-th column of the matrix

P =




10 0 0 0 0 0 9 10 −1 −3 7
0 10 0 0 0 0 −2 −1 −8 2 −6
0 0 10 0 0 0 −9 7 −5 5 1
0 0 0 10 0 0 5 −2 −9 −8 −9
0 0 0 0 10 0 −10 −2 −3 6 −4
0 0 0 0 0 10 −8 9 2 7 −10




.

Hint: ν(P ) = (32/(5π5))
∫
R5

∏11
k=1 sinc(si · y) dy, where

S =




10 0 0 0 0 9 −2 −9 5 −10 −8
0 10 0 0 0 10 −1 7 −2 −2 9
0 0 10 0 0 −1 −8 −5 −9 −3 2
0 0 0 10 0 −3 2 5 −8 6 7
0 0 0 0 10 7 −6 1 −9 −4 −10




.

31. Another iterated sinc integral. For positive constants (ai), evaluate
∫ ∞

−∞
· · ·

∫ ∞

−∞

sin(a1x1)

x1

· · · sin(anxn)

xn

sin(a1x1 + · · ·+ anxn)

x1 + · · ·+ xn

dx1 · · · dxn.

Answer: πn min(a1, . . . , an).

32. Infinite series and Clausen’s product. For x and t appropriately
restricted:

(a) Use Clausen’s product to obtain

∞∑
n=0

(t)n (−t)n

(2 n)!
(2 x)2 n = cos (2 t arcsin (x))
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and

−1

2

∞∑
n=1

(t)n (−t)n

(2 n)!

(
4 sin2 x

)n
= sin2 (t x) .

(b) Obtain the Taylor series

arcsin2(x) =
1

2

∑
n≥1

(2 x)2n

n2
(
2n
n

)

on taking an appropriate limit as t → 0 (see also Exercise 16 of
Chapter 1). Hence, show

∑
n≥1

1

n2
(
2n
n

) =
π2

18
and

∑
n≥1

(−1)n

n2
(
2n
n

) = −2 log2

(
1 +

√
5

2

)
.

Evaluate
∑

n≥1 3n/
(
2n
n

)
and both of

∑
n≥1 (±1)n /

(
2n
n

)
.

33. Proof of the Korovkin theorems. Prove Theorems 2.6.2 and 2.6.4.

34. Korovkin by inequalities. An interesting recent approach to the Ko-
rovkin theorems is given in [210]. Recall that a subset of a continuous
function space is a subalgebra if it is closed under pointwise multiplication.
Therein, the following elegant lemma is proven:

Lemma 2.7.3 Suppose that A is a norm-closed subalgebra of C[a, b] that
contains 1. Let T be a positive linear operator on A such that T (1) ≤ 1.
Then

(a) E(h) = T (h2)− T (h)2 ≥ 0,

(b) |T (fg)− T (f)T (g)|2 ≤ E(f) E(g),

(c) ‖T (fg)− T (f)T (g)‖2 ≤ ‖E(f)‖ ‖E(g)‖,
(d) ‖T (fg)− T (f)T (g)‖2 ≤ ‖E(f)‖ ‖E(g) + E(k)‖,

for all elements f, g, h and k in the algebra.

Proof. (a) is established by observing that T ((h + t 1)2) ≥ 0 for all real
t. Then (b) follows with h replaced by f + tg, and (c) and (d) are easy
consequences. 2
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It is now a nice problem to show that the first and second Korovkin theo-
rems follow—if one knows that the polynomials are dense in C[a, b]. More-
over, the same approach will yield:

Theorem 2.7.4 (Complex Korovkin theorem). Let D = {z ∈ C :
|z| ≤ 1}. Let Tn be positive linear operators on C(D) such that Tn(h) ⇒ h
for h = 1, z and |z|2. Then this holds for all h in C(D).

To prove this, it helps to observe that positive operators preserve conju-
gates: T

(
h
)

= T (h) for all h in C(D).

35. Bézier curves. The Bézier curve of degree n defined by n + 1 points
b0, b1, . . . , bn is exactly the Bernstein polynomial interpolating the values
at k/n

n∑

k=1

bk

(
n

k

)
tk (1− t)n−k. (2.7.36)

Typically, parametric cubic Bézier curves in the plane such as

x(t) = − (1− t)3 − t (1− t)2 +
3

2
t2 (1− t) + t3 (2.7.37)

y(t) =
1

2
(1− t)3 + t (1− t)2 +

3

4
t2 (1− t) +

1

2
t3

are fitted together for smoothing purposes. To compute the values, it is
useful to observe Castlejau’s algorithm that the basis functions Bn,k = t 7→(

n
k

)
tk (1− t)n−k satisfy the recursion Bn,−1 = Bn−1,n = 0 and

Bn,k(t) = (1− t) Bn−1,k(t) + t Bn−1,k−1(t),

for 0 ≤ k ≤ n and all real t.

36. Bernstein polynomials. Determine the appropriate Bernstein polyno-
mials on [−1, 1].

37. Rate of approximation. As we have seen, the rate of approximation
is tied to the smoothness of the underlying function. In Lebesgue’s proof
of the Stone-Weierstrass Theorem, the main work is in showing that | · |
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can be uniformly approximated by polynomials on [−1, 1]. Plot the first
few Bernstein polynomials and observe that the approximation is worst at
zero, where |t| is not differentiable.

38. Korovkin kernels. Apply the Korovkin theorems to the Poisson, Fejér-
Korovkin, and Jackson kernels, respectively.

39. Contriving coincidences.

(a) A consequence of the theta transform, (2.3.15), in the form s θ2
3 (e−πs) =

θ2
3

(
e−π/s

)
, is that

∑
n≥1

e−(n/10)2 ≈ 5 Γ

(
1

2

)
− 1

2

and they agree through 427 digits, with similar more baroque esti-
mates for higher powers of ten.

(b) The fact that α = exp(π
√

163/3) ≈ 640320 lies deeper and relates to
the fact that the only imaginary quadratic fields with unique factor-
ization are Q

(√−d
)
, with d = 1, 2, 4, 7, 11, 19, 43, 67, and 163.

(c) This leads to a spectacular “billion-digit” fraud
∞∑

n=1

[nα]

2n
≈ 1280640.

As we saw this is explained by Theorem 1.4.2 and the fact that as a
continued fraction,

α = [640320, 1653264929, 30, 1, 321, 2, 1, 1, 1, 4, 3, 4, 2, . . .].

(d) Determine the integers Nd such that
∞∑

n=1

[nαd]

2n
≈ Nd,

for αd = exp(π
√

d/3) with d = 19, 43, 67, 163, and determine the error
in each case.

These examples signal the danger of inferring a symbolic identity from tools
like PSLQ without knowing the context. That said, we know of nearly no
cases where such spectacular deception has occurred without contrivance.


