Solution Paper – II

Mathematical Methods in Engineering & Science

Exercise 1

Determine if the following system is consistent or not

$$\begin{cases} 3x_1 + 4x_2 + x_3 = 1 \\ 2x_1 + 3x_2 = 0 \\ 4x_1 + 3x_2 - x_3 = -2. \end{cases}$$

Solution.

Step 1: To eliminate the variable x_1 from the second and third equations we perform the operations $r_2 \leftarrow 3r_2 - 2r_1$ and $r_3 \leftarrow 3r_3 - 4r_1$ obtaining the system

$$\begin{cases} 3x_1 + 4x_2 + x_3 = 1 \\ x_2 - 2x_3 = -2 \\ - 7x_2 - 7x_3 = -10. \end{cases}$$

Step 2: Now, to eliminate the variable x_3 from the third equation we apply the operation $r_3 \leftarrow r_3 + 7r_2$ to obtain

$$\begin{cases} 3x_1 + 4x_2 + x_3 = 1 \\ x_2 - 2x_3 = -2 \\ -21x_3 = -24. \end{cases}$$

Solving the system by the method of backward substitution we find the unique solution $x_1 = -\frac{3}{7}, x_2 = \frac{2}{7}, x_3 = \frac{8}{7}$. Hence the system is consistent

Exercise 2

Show that (5+4s-7t,s,t), where $s,t \in \mathbb{R}$, is a solution to the equation

$$x_1 - 4x_2 + 7x_3 = 5$$
.

Solution

 $x_1 = 5 + 4s - 7t$, $x_2 = s$, and $x_3 = t$ is a solution to the given equation because

$$x_1 - 4x_2 + 7x_3 = (5 + 4s - 7t) - 4s + 7t = 5.$$

A linear equation can have infinitely many solutions, exactly one solution or no solutions at all. Exercise — 3 Find the complex Fourier series of the function

$$f(t) = \begin{cases} 0 & -\pi < t < 0, \\ 1 & 0 < t < \pi. \end{cases}$$

Solution — Since the period is 2π , so $p = \pi$, and the complex Fourier series is given by

$$f(t) = \sum_{n=-\infty}^{\infty} c_n e^{int}$$

with

$$c_0 = \frac{1}{2\pi} \int_0^{\pi} dt = \frac{1}{2},$$

$$c_n = \frac{1}{2\pi} \int_0^{\pi} e^{-int} dt = \frac{1 - e^{-in\pi}}{2\pi n i} = \begin{cases} 0 & n = \text{even,} \\ \frac{1}{\pi n i} & n = \text{odd.} \end{cases}$$

Therefore the complex series is

$$f(t) = \frac{1}{2} + \frac{1}{i\pi} \left(\dots - \frac{1}{3} e^{-i3t} - e^{-it} + e^{it} + \frac{1}{3} e^{i3t} + \dots \right).$$

It is clear that

$$c_{-n} = \frac{1}{\pi(-n)\mathbf{i}} = \frac{1}{\pi n(-\mathbf{i})} = c_n^*$$

as we expect, sine f(t) is real. Furthermore, since

$$e^{int} - e^{-int} = 2i\sin nt,$$

the Fourier series can be written as

$$f(t) = \frac{1}{2} + \frac{2}{\pi} \left(\sin t + \frac{1}{3} \sin 3t + \frac{1}{5} \sin 5t + \cdots \right).$$

This is also what we expected, since $f(t) - \frac{1}{2}$ is an odd function, and

$$a_n = c_n + c_{-n} = \frac{1}{\pi n \mathbf{i}} + \frac{1}{\pi (-n) \mathbf{i}} = 0,$$

 $b_n = \mathbf{i}(c_n - c_{-n}) = \mathbf{i}\left(\frac{1}{\pi n \mathbf{i}} - \frac{1}{\pi (-n) \mathbf{i}}\right) = \frac{2}{\pi n}.$

Exercise 4

Use Gauss-Jordan elimination to transform the following matrix first into rowechelon form and then into reduced row-echelon form

$$\left(\begin{array}{cccccccc}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
3 & -9 & 12 & -9 & 6 & 15
\end{array}\right)$$

Solution.

By following the steps in the Gauss-Jordan algorithm we find

Step 1:
$$r_3 \leftarrow \frac{1}{3}r_3$$

$$\left(\begin{array}{cccccccc}
0 & 3 & -6 & 6 & 4 & -5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
1 & -3 & 4 & -3 & 2 & 5
\end{array}\right)$$

Step 2:
$$r_1 \leftrightarrow r_3$$

$$\left(\begin{array}{ccccccccc}
1 & -3 & 4 & -3 & 2 & 5 \\
3 & -7 & 8 & -5 & 8 & 9 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right)$$

Step 3:
$$r_2 \leftarrow r_2 - 3r_1$$

$$\left(\begin{array}{cccccccccc}
1 & -3 & 4 & -3 & 2 & 5 \\
0 & 2 & -4 & 4 & 2 & -6 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right)$$

Step 4:
$$r_2 \leftarrow \frac{1}{2}r_2$$

$$\left(\begin{array}{cccccccc}
1 & -3 & 4 & -3 & 2 & 5 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 3 & -6 & 6 & 4 & -5
\end{array}\right)$$

Step 5: $r_3 \leftarrow r_3 - 3r_2$

$$\left(\begin{array}{ccccccccc}
1 & -3 & 4 & -3 & 2 & 5 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right)$$

Step 6: $r_1 \leftarrow r_1 + 3r_2$

$$\left(\begin{array}{cccccccc}
1 & 0 & -2 & 3 & 5 & -4 \\
0 & 1 & -2 & 2 & 1 & -3 \\
0 & 0 & 0 & 0 & 1 & 4
\end{array}\right)$$

Step 7: $r_1 \leftarrow r_1 - 5r_3$ and $r_2 \leftarrow r_2 - r_3$

$$\left(\begin{array}{cccccc} 1 & 0 & -2 & 3 & 0 & -24 \\ 0 & 1 & -2 & 2 & 0 & -7 \\ 0 & 0 & 0 & 0 & 1 & 4 \end{array} \right) \blacksquare$$

It can be shown that no matter how the elementary row operations are varied, one will always arrive at the same reduced row-echelon form; that is the reduced row echelon form is unique (See Theorem 68). On the contrary row-echelon form is not unique. However, the number of leading 1's of two different row-echelon forms is the same (this will be proved in Chapter 4). That is, two row-echelon matrices have the same number of nonzero rows. This number is called the rank of A and is denoted by rank(A). In Chapter 6, we will prove that if A is an $m \times n$ matrix then $rank(A) \le n$ and $rank(A) \le m$.

Exercise - 5 Find the Fourier series for f(t) which is defined as

$$f(t) = t$$
 for $-L < t \le L$, and $f(t + 2L) = f(t)$.

Solution

$$f(t) = \frac{1}{2}a_0 + \sum_{n=1}^{\infty} \left(a_n \cos \frac{n\pi t}{L} + b_n \sin \frac{n\pi t}{L} \right),$$

$$a_0 = \frac{1}{L} \int_{-L}^{L} t \, dt = 0,$$

$$a_n = \frac{1}{L} \int_{-L}^{L} t \cos \frac{n\pi t}{L} dt = \frac{1}{L} \left[\frac{L}{n\pi} t \sin \frac{n\pi t}{L} + \left(\frac{L}{n\pi} \right)^2 \cos \frac{n\pi t}{L} \right]_{-L}^{L} = 0,$$

$$b_n = \frac{1}{L} \int_{-L}^{L} t \sin \frac{n\pi t}{L} dt$$

$$= \frac{1}{L} \left[-\frac{L}{n\pi} t \cos \frac{n\pi t}{L} + \left(\frac{L}{n\pi}\right)^2 \sin \frac{n\pi t}{L} \right]_{-L}^{L} = -\frac{2L}{n\pi} \cos n\pi.$$

Thus

$$f(t) = \frac{2L}{\pi} \sum_{n=1}^{\infty} -\frac{1}{n} \cos n\pi \sin \frac{n\pi t}{L} = \frac{2L}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi t}{L}$$
$$= \frac{2L}{\pi} \left(\sin \frac{\pi t}{L} - \frac{1}{2} \sin \frac{2\pi t}{L} + \frac{1}{3} \sin \frac{3\pi t}{L} - \cdots \right). \tag{1.19}$$

The convergence of this series is shown in Fig. 1.3, where S_N is the partial sum defined as

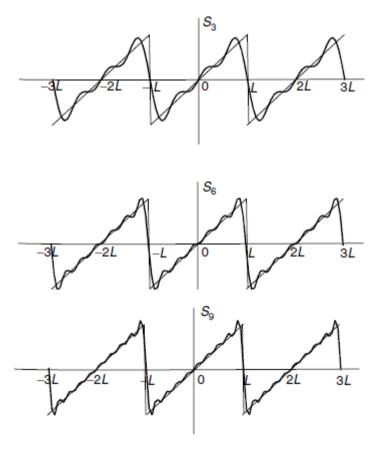


Fig. 1.3. The convergence of the Fourier series for the periodic function whose definition in one period is f(t) = t, -L < t < L. The first N terms approximations are shown as S_N

$$S_N = \frac{2L}{\pi} \sum_{n=1}^{N} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi t}{L}.$$

Note the increasing accuracy with which the terms approximate the function. With three terms, S_3 already looks like the function. Except for the Gibbs' phenomenon, a very good approximation is obtained with S_9 .

Exercise - 6 Find the Fourier series of the function whose definition in one period is

$$f(t) = t^3, \quad -L < t < L.$$

Solution — Integrating the Fourier series for t^2 in the required range term-by-term

$$\int t^2 dt = \int \left[\frac{L^2}{3} + \frac{4L^2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos \frac{n\pi}{L} t \right] dt,$$

we obtain

$$\frac{1}{3}t^3 = \frac{L^2}{3}t + \frac{4L^2}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \frac{L}{n\pi} \sin \frac{n\pi}{L} t + C.$$

We can find the integration constant C by looking at the values of both sides of this equation at t = 0. Clearly C = 0. Furthermore, since in the range of -L < t < L,

$$t = \frac{2L}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi}{L} t,$$

therefore the Fourier series of t^3 in the required range is

$$t^{3} = \frac{2L^{3}}{\pi} \sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n} \sin \frac{n\pi}{L} t + \frac{12L^{3}}{\pi^{3}} \sum_{n=1}^{\infty} \frac{(-1)^{n}}{n^{3}} \sin \frac{n\pi}{L} t.$$

Exercise - 7 Find the domain of $f(x,y) = x \ln(y^2 - x)$.

Solution. The expression $x \ln(y^2 - x)$ is defined only when $y^2 - x > 0$. That is $y^2 > x$. The curve $y^2 = x$ separates the plane into two regions, one satisfying the inequality $y^2 > x$, the other satisfying $y^2 < x$. To find out which region is determined by the inequality $y^2 > x$. Pick any point in one of the regions and test whether it satisfies the inequality. If it does, then by 'connectivity', that whole region is the one satisfying $y^2 > x$, otherwise, it must be the other region. For example, pick the point (3,2). Since $2^2 > 3$, the region satisfying $y^2 > x$ is the one containing (3,2). Thus, domain of f is $\{(x,y) \in \mathbb{R}^2 \mid y^2 > x\}$.

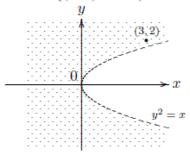


Figure 39 Domain of $x \ln(y^2 - x)$

Exercise - 8 Find the distance between the skew lines:

$$L_1: x = 1 + t, y = -2 + 3t, z = 4 - t$$

$$L_2: x = 2s, y = 3 + s, z = -3 + 4s$$

Solution. As L_1 and L_2 are skew, they are contained in two parallel planes respectively. A normal to these two parallel planes is given by

$$\begin{vmatrix} \mathbf{i} & \mathbf{j} & \mathbf{k} \\ 1 & 3 & -1 \\ 2 & 1 & 4 \end{vmatrix} = \langle 13, -6, -5 \rangle.$$

Let s=0 in L_2 . We get the point (0,3,-3) on L_2 . Therefore, an equation of the plane containing L_2 is $\langle x-0,y-3,z-(-3)\rangle \cdot \langle 13,-6,-5\rangle = 0$. That is 13x-6y-5z+3=0. Let =0 in L_1 . We get the point (1,-2,4) on L_1 . Thus, the distance between L_1 and L_2 is give by

$$\frac{|13(1) - 6(-2) - 5(4) + 3|}{\sqrt{13^2 + (-6)^2 + (-5)^2}} = \frac{8}{\sqrt{230}}.$$

Exercise - 9 Find the Laplace transform of

$$f(t) = \begin{cases} 1, & 0 \le t < 2, \\ t - 2, & 2 \le t. \end{cases}$$

Solution.

We do this by definition:

$$\begin{split} F(s) &= \int_0^\infty e^{-st} f(t) \, dt \, = \int_0^2 e^{-st} dt + \int_2^\infty (t-2) e^{-st} dt \\ &= \left. \frac{1}{-s} e^{-st} \right|_{t=0}^2 + \left. (t-2) \frac{1}{-s} e^{-st} \right|_{t=2}^\infty - \int_2^A \frac{1}{-s} e^{-st} dt \\ &= \left. \frac{1}{-s} (e^{-2s} - 1) + (0 - 0) + \frac{1}{s} \frac{1}{-s} e^{-st} \right|_{t=2}^\infty = \frac{1}{-s} (e^{-2s} - 1) + \frac{1}{s^2} e^{-2s} \end{split}$$

Exercise - 10 Find the eigenvalues of $A = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ and find all eigenvectors.

Solution. The characteristic equation of A is $\lambda^2 - 4\lambda + 3 = 0$, or

$$(\lambda - 1)(\lambda - 3) = 0.$$

Hence $\lambda = 1$ or 3. The eigenvector equation $(A - \lambda I_n)X = 0$ reduces to

$$\left[\begin{array}{cc} 2-\lambda & 1\\ 1 & 2-\lambda \end{array}\right] \left[\begin{array}{c} x\\ y \end{array}\right] = \left[\begin{array}{c} 0\\ 0 \end{array}\right],$$

or

$$(2 - \lambda)x + y = 0$$

$$x + (2 - \lambda)y = 0.$$

Taking $\lambda = 1$ gives

$$\begin{aligned}
x + y &= 0 \\
x + y &= 0,
\end{aligned}$$

which has solution $x=-y,\,y$ arbitrary. Consequently the eigenvectors corresponding to $\lambda=1$ are the vectors $\begin{bmatrix} -y\\y \end{bmatrix}$, with $y\neq 0$.

Taking $\lambda = 3$ gives

$$\begin{aligned}
-x+y &= 0 \\
x-y &= 0,
\end{aligned}$$

which has solution x=y, y arbitrary. Consequently the eigenvectors corresponding to $\lambda=3$ are the vectors $\begin{bmatrix} y \\ y \end{bmatrix}$, with $y\neq 0$.