Sample Paper – II

Mathematical Methods in Engineering & Science

Attempt 5 Questions from Each Section

Max Marks-100 Time: 3 Hrs.

Each Question Carries Equal Marks

Section A

Question-1 Prove that the eigenvectors of a real matrix that correspond to the real eigenvalues can be chosen to be real.

Question - 2 Use Leverrier's method to compute the cofactors of the characteristic polynomial of the matrix

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix}.$$

Question - 3 Use unitary similarity transformations to upper triangularize the matrix

$$A = \begin{bmatrix} 2 & 3 \\ 4 & 5 \end{bmatrix}.$$

Question – 4 Prove the Triangle inequality $|V_1+V_2| \le |V_1|+|V_2|$.

Question - 5 Prove the identity

$$|\mathbf{a}\times\mathbf{b}|^2+(\mathbf{a}\cdot\mathbf{b})^2=(|\mathbf{a}||\mathbf{b}|)^2.$$

Deduce that if a and b are unit vectors, then

$$|\mathbf{a} \times \mathbf{b}|^2 + (\mathbf{a} \cdot \mathbf{b})^2 = 1.$$

Question - 6 Show that

$$\mathbf{a} \times (\mathbf{b} \times \mathbf{c}) = (\mathbf{a} \cdot \mathbf{c})\mathbf{b} - (\mathbf{a} \cdot \mathbf{b})\mathbf{c}.$$

Deduce from this $\mathbf{a} \times (\mathbf{b} \times \mathbf{c})$ is not necessarily equal to $(\mathbf{a} \times \mathbf{b}) \times \mathbf{c}$. In fact, can you say when they are equal?

Question - 7

- (a) Show that if A is an $m \times n$ matrix, x, y are $n \times 1$ matrices and α, β are numbers then $A(\alpha x + \beta y) = \alpha Ax + \beta Ay$.
- (b) Using the matrix notation of a linear system, prove that, if a linear system has more than one solution then it must have an infinite number of solutions.

Section B

Question - 8

Find the Fourier series of the following functions:

(a)
$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ 2 & 0 < x < \pi \end{cases}$$
, $f(x + 2\pi) = f(x)$,

(b)
$$f(x) = \begin{cases} 1 & -\frac{\pi}{2} < x < \frac{\pi}{2} \\ -1 & \frac{\pi}{2} < x < \frac{3\pi}{2} \end{cases}$$
, $f(x+2\pi) = f(x)$,

(c)
$$f(x) = \begin{cases} 0 & -\pi < x < 0 \\ \sin x & 0 < x < \pi \end{cases}$$
, $f(x + 2\pi) = f(x)$.

Question - 9

Use Gauss-Jordan elimination to transform the following matrix first into rowechelon form and then into reduced row-echelon form

$$\begin{pmatrix}
0 & -3 & -6 & 4 & 9 \\
-1 & -2 & -1 & 3 & 1 \\
-2 & -3 & 0 & 3 & -1 \\
1 & 4 & 5 & -9 & -7
\end{pmatrix}$$

Question - 10.

It can be shown that any four *noncoplanar* points (i.e. points that do not lie in the same plane) determine a sphere.¹² Find the equation of the sphere that passes through the points (0,0,0), (0,0,2), (1,-4,3) and (0,-1,3).

Question - 11.

Let S be the sphere with radius 1 centered at (0,0,1), and let S^* be S without the "north pole" point (0,0,2). Let (a,b,c) be an arbitrary point on S^* . Then the line passing through (0,0,2) and (a,b,c) intersects the xy-plane at some point (x,y,0), as in Figure 1.6.10. Find this point (x,y,0) in terms of a,b and c.

(Note: Every point in the xy-plane can be matched with a point on S^* , and vice versa, in this manner. This method is called *stereographic projection*, which essentially identifies all of \mathbb{R}^2 with a "punctured" sphere.)

Figure 1.6.10

Question - 12

Show that the distance d between the points P_1 and P_2 with cylindrical coordinates (r_1, θ_1, z_1) and (r_2, θ_2, z_2) , respectively, is

$$d = \sqrt{r_1^2 + r_2^2 - 2r_1r_2\cos(\theta_2 - \theta_1) + (z_2 - z_1)^2}.$$

Question - 13

Show that the distance d between the points P_1 and P_2 with spherical coordinates $(\rho_1, \theta_1, \phi_1)$ and $(\rho_2, \theta_2, \phi_2)$, respectively, is

$$d = \sqrt{\rho_1^2 + \rho_2^2 - 2\rho_1\rho_2[\sin\phi_1\sin\phi_2\cos(\theta_2 - \theta_1) + \cos\phi_1\cos\phi_2]}.$$

Question - 14

We know that every vector in \mathbb{R}^3 can be written as a scalar combination of the vectors \mathbf{i} , \mathbf{j} , and \mathbf{k} . Can every vector in \mathbb{R}^3 be written as a scalar combination of just \mathbf{i} and \mathbf{j} , i.e. for any vector \mathbf{v} in \mathbb{R}^3 , are there scalars m, n such that $\mathbf{v} = m\mathbf{i} + n\mathbf{j}$? Justify your answer.