Outline

Operational Fundamentals of Linear Algebra

26.

Range and Null Space: Rank and Nullity Basis Change of Basis Elementary Transformations

Operational Fundamentals of Linear Algebra

- Range and Null Space: Rank and Nullity Basis
- Change of Basis
- **Elementary Transformations**

Range and Null Space: Rank and Rank and

Change of Basis Elementary Transformations

Consider $\mathbf{A} \in R^{m \times n}$ as a mapping

 $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^m, \qquad \mathbf{A}\mathbf{x} = \mathbf{y}, \qquad \mathbf{x} \in \mathbb{R}^n, \qquad \mathbf{y} \in \mathbb{R}^m.$

Observations

 Every x ∈ Rⁿ has an image y ∈ R^m, but every y ∈ R^m need not have a pre-image in Rⁿ.

Range (or range space) as subset/subspace of co-domain: containing images of all $\mathbf{x} \in \mathbb{R}^n$.

2. Image of $\mathbf{x} \in \mathbb{R}^n$ in \mathbb{R}^m is unique, but pre-image of $\mathbf{y} \in \mathbb{R}^m$ need not be.

It may be non-existent, unique or infinitely many.

Null space as subset/subspace of domain: containing pre-images of only $\mathbf{0} \in \mathbb{R}^m$.

28,

Range and Null Space: Rank and Null Space: Rank and Null Space: Rank and Null

Figure: Range and null space: schematic representation

Question: What is the dimension of a vector space? **Linear dependence and independence:** Vectors x_1, x_2, \dots, x_r in a vector space are called linearly independent if

$$k_1\mathbf{x}_1 + k_2\mathbf{x}_2 + \cdots + k_r\mathbf{x}_r = \mathbf{0} \quad \Rightarrow \quad k_1 = k_2 = \cdots = k_r = \mathbf{0}.$$

$$Range(\mathbf{A}) = \{\mathbf{y} : \mathbf{y} = \mathbf{A}\mathbf{x}, \ \mathbf{x} \in R^n\}$$
$$Null(\mathbf{A}) = \{\mathbf{x} : \mathbf{x} \in R^n, \ \mathbf{A}\mathbf{x} = \mathbf{0}\}$$
$$Rank(\mathbf{A}) = \dim Range(\mathbf{A})$$
$$Nullity(\mathbf{A}) = \dim Null(\mathbf{A})$$

Basis

Take a set of vectors \mathbf{v}_1 , \mathbf{v}_2 , \cdots , \mathbf{v}_r in a vector space. **Question:** Given a vector \mathbf{v} in the vector space, can we describe it as

$$\mathbf{v} = k_1 \mathbf{v}_1 + k_2 \mathbf{v}_2 + \cdots + k_r \mathbf{v}_r = \mathbf{V} \mathbf{k},$$

where $\mathbf{V} = [\mathbf{v}_1 \ \mathbf{v}_2 \ \cdots \ \mathbf{v}_r]$ and $\mathbf{k} = [k_1 \ k_2 \ \cdots \ k_r]^T$? **Answer:** Not necessarily.

Span, denoted as $< \mathbf{v}_1, \mathbf{v}_2, \cdots, \mathbf{v}_r >:$ the subspace described/generated by a set of vectors.

Basis:

A basis of a vector space is composed of an ordered minimal set of vectors spanning the entire space.

The basis for an n-dimensional space will have exactly n members, all linearly independent.

Basis

Orthogonal basis: $\{\textbf{v}_1, \textbf{v}_2, \cdots, \textbf{v}_n\}$ with

$$\mathbf{v}_j^T \mathbf{v}_k = 0 \quad \forall \ j \neq k.$$

Orthonormal basis:

$$\mathbf{v}_j^T \mathbf{v}_k = \delta_{jk} = \begin{cases} 0 & \text{if } j \neq k \\ 1 & \text{if } j = k \end{cases}$$

Members of an **orthonormal** basis form an **orthogonal** matrix. Properties of an orthogonal matrix:

$$\mathbf{V}^{-1} = \mathbf{V}^T \text{ or } \mathbf{V}\mathbf{V}^T = \mathbf{I}, \text{ and} \\ \det \mathbf{V} = +1 \text{ or } -1, \end{cases}$$

Natural basis:

$$\mathbf{e}_{1} = \begin{bmatrix} 1\\0\\0\\\vdots\\0 \end{bmatrix}, \quad \mathbf{e}_{2} = \begin{bmatrix} 0\\1\\0\\\vdots\\0 \end{bmatrix}, \quad \cdots, \quad \mathbf{e}_{n} = \begin{bmatrix} 0\\0\\0\\\vdots\\1 \end{bmatrix}$$

٠

Range and Null Space: Rank and Nullity Basis Change of Basis Elementary Transformations

Change of Basis

Range and Null Space: Rank and Nullity Basis Change of Basis

Suppose **x** represents a vector (point) in $R^{n^{\text{Elementary Transformations}}}$ **Question:** If we change over to a new basis {**c**₁, **c**₂, · · · , **c**_n}, how does the representation of a vector change?

$$\mathbf{x} = \bar{x}_1 \mathbf{c}_1 + \bar{x}_2 \mathbf{c}_2 + \dots + \bar{x}_n \mathbf{c}_n$$
$$= [\mathbf{c}_1 \quad \mathbf{c}_2 \quad \dots \quad \mathbf{c}_n] \begin{bmatrix} \bar{x}_1 \\ \bar{x}_2 \\ \vdots \\ \bar{x}_n \end{bmatrix}$$

With $\mathbf{C} = [\mathbf{c}_1 \quad \mathbf{c}_2 \quad \cdots \quad \mathbf{c}_n],$

new to old coordinates: $\mathbf{C}\bar{\mathbf{x}} = \mathbf{x}$ and old to new coordinates: $\bar{\mathbf{x}} = \mathbf{C}^{-1}\mathbf{x}$.

Note: Matrix **C** is invertible. *How*? Special case with **C** orthogonal: **orthogonal coordinate transformation.**

Change of Basis

32.

Question: And, how does basis change affect the representation of a linear transformation?

Consider the mapping $\mathbf{A}: \mathbb{R}^n \to \mathbb{R}^m, \quad \mathbf{A}\mathbf{x} = \mathbf{y}.$

Change the basis of the domain through $\mathbf{P} \in R^{n \times n}$ and that of the co-domain through $\mathbf{Q} \in R^{m \times m}$.

New and old vector representations are related as

$$\mathbf{P}\mathbf{ar{x}} = \mathbf{x}$$
 and $\mathbf{Q}\mathbf{ar{y}} = \mathbf{y}$.

Then, $\mathbf{A}\mathbf{x} = \mathbf{y} \Rightarrow \mathbf{\bar{A}}\mathbf{\bar{x}} = \mathbf{\bar{y}}$, with $\mathbf{\bar{A}} = \mathbf{Q}^{-1}\mathbf{A}\mathbf{P}$

Special case: m = n and $\mathbf{P} = \mathbf{Q}$ gives a similarity transformation

$$\bar{\mathbf{A}} = \mathbf{P}^{-1}\mathbf{A}\mathbf{P}$$

Elementary Transformations

Range and Null Space: Rank and Nullity Basis Change of Basis Elementary Transformations

Observation: Certain reorganizations of equations in a system have no effect on the solution(s).

Elementary Row Transformations:

- 1. interchange of two rows,
- 2. scaling of a row, and
- 3. addition of a scalar multiple of a row to another.

Elementary Column Transformations: Similar operations with columns, equivalent to a corresponding *shuffling* of the *variables* (unknowns).

Elementary Transformations

Operational Fundamentals of Linear Algebra

Range and Null Space: Rank and Nullity Basis Change of Basis Elementary Transformations

Equivalence of matrices: An elementary transformation defines an equivalence relation between two matrices.

Reduction to normal form:

$$\mathbf{A}_{N} = \left[\begin{array}{cc} \mathbf{I}_{r} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{array} \right]$$

Rank invariance: Elementary transformations do not alter the rank of a matrix.

Elementary transformation as matrix multiplication:

an elementary row transformation on a matrix is equivalent to a pre-multiplication with an elementary matrix, obtained through the same row transformation on the identity matrix (of appropriate size).

Similarly, an elementary column transformation is equivalent to *post-multiplication* with the corresponding elementary matrix.

Points to note

- Concepts of range and null space of a linear transformation.
- Effects of change of basis on representations of vectors and linear transformations.
- Elementary transformations as tools to modify (simplify) systems of (simultaneous) linear equations.

Necessary Exercises: 2,4,5,6