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The terms  represent the eddy diffusivities for momentum and heat, respectively. 
At the wall of the pipe, the momentum equation (eq. 4.29a) becomes, 

 

Where f is the fanning friction factor (ratio of shear force to inertial force) and  is the average 
fluid velocity. 

Equation eq.4.30 can be rearranged as, 

 

The eq.4.32 is the dimensionless velocity gradient at the wall using momentum transport. We may 
get the similar relation using heat transport as shown below. 
Wall heat flux can be written as, 

 

  

Where Tav is the wall temperature and the Tav is the average temperature of the fluid. Thus, the 
dimensionless temperature gradient at the wall using heat transfer will be, 
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The advantage of the analogy lies in that the h may not be available for certain 
geometries/situations however, for which f value may be available as it is easier to perform 
momentum transport experiments and then to calculate the f. Thus by using the eq.4.34 the h may 
be found out without involving into the exhaustive and difficult heat transfer experiments. 

4.4.2 The Chilton-Colburn analogy 

The Reynolds analogy does not always give satisfactory results. Thus, Chilton and Colburn 
experimentally modified the Reynolds’ analogy. The empirically modified Reynolds’ analogy is known 
as Chilton-Colburn analogy and is given by eq.4.35, 

 

It can be noted that for unit Prandtl number the Chilton-Colburn analogy becomes Reynolds 
analogy. 

4.4.3 The Pradntl analogy 

In the turbulent core the transport is mainly by eddies and near the wall, that is laminar sub-layer, 
the transport is by molecular diffusion. Therefore, Prandtl modified the above two analogies using 
universal velocity profile while driving the analogy (eq. 4.36). 

 

4.4.4 The Van Karman analogy 

Though Prandtl considered the laminar and turbulent laminar sublayers but did not consider the 
buffer zone. Thus, Van Karman included the buffer zone into the Prandtl analogy to further improve 
the analogy. 



 

 


