4.4 Momentum and heat transfer analogies

Consider a fluid flows in a circular pipe in a laminar low (fig.6.6). The wall of the pipe is maintained
at T,temperature, which is higher than the flowing fluid temperature. The fluid being in relatively
lower temperature than the wall temperature will get heated as it flows through the pipe. Moreover,
the radial transport of the momentum in the pipe occurs as per the Newton’s law of viscosity. For a
circular pipe momentum transport and heat transport may be written in a similar way as shown in
the eq. 4.28,

Momentum flux = momentum diffusivity x gradient of concentration of momentum

Ty % (o) 4.28(a)

It may be noted that the fluid velocity (uz) is a function of radius of the pipe.

Heat flux= thermal diffusivity % gradient of concentration of heat energy
= a2 (pc,T) 4.28(b)

where « = Thermal diffusion = ——
FEP

Now, the question comes, why are we discussion about the similarities? The answer is straight
forward that it is comparatively easy to experimentally/theoretically evaluate the momentum
transport under various conditions. However, the heat transport is not so easy to find out.
Therefore, we will learn different analogies to find the heat transport relations.

Equation 4.28 is for the laminar flow but if the flow is turbulent, eddies are generated. Eddy is a
lump/chunk of fluid elements that move together. Thus it may be assumed that the eddies are the
molecules of the fluid and are responsible for the transport of momentum and heat energy in the
turbulent flow. Therefore, in turbulent situation the momentum and heat transport is not only by the
molecular diffusion but also by the eddy diffusivities.

Thus, turbulent transport of momentum and turbulent transport of heat may be represented by eq.
4.29a and 4.29b, respectively.

T=—(v+e,)=(pu,) (4.292)

q = (a+ &) —(pc,T) (4.29b)
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The terms ™ h represent the eddy diffusivities for momentum and heat, respectively.

At the wall of the pipe, the momentum equation (eq. 4.29a) becomes,

1, = -+ €)= (pu,) (4.30)
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Where fis the fanning friction factor (ratio of shear force to inertial force) and Uz is the average
fluid velocity.

Equation eq.4.30 can be rearranged as,
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where, ii_ = dimensionless velocity

Using eq.4.31 in the above equation,

_ dig _ _fuz (4.32)
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The eq.4.32 is the dimensionless velocity gradient at the wall using momentum transport. We may
get the similar relation using heat transport as shown below.
Wall heat flux can be written as,

d
[:D: + EH]E[F"C’PT] r=R qrw = h [Tw - Tav:]

Where T, is the wall temperature and the T, is the average temperature of the fluid. Thus, the
dimensionless temperature gradient at the wall using heat transfer will be,

R = (433)
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Where the heat transfer coefficient is represented by #and dimensionless temperature is
T
Tw—Tar .
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Based on the above discussion many researchers have given their analogies. These analogies are
represented in the subsequent section.

4.4.1 Reynolds analogy

Reynolds has taken the following assumptions to find the analogy between heat and momentum
transport.

1. Gradients of the dimensionless parameters at the  wall are  equal.
2. The diffusivity terms are equal. That is

Thus if we use the above assumptions along with the eq.4.32 and 4.33,
(v +en)=(a+eq)
Thus if we use the above assumptions along with the eq.4.32 and 4.33,
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Equation 4.34 is known as Reynolds’s analogy.
The above relation may also be written in terms of the Darcy’s friction factor (fD) instead of fanning
friction factor = 4f)
Where Stanton number (St) is defined as,



St — h ~ hAT  heattransfer by convection
é pCpT B pCpv, AT " heat transfer by bulk flow
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The advantage of the analogy lies in that the Amay not be available for certain
geometries/situations however, for which fvalue may be available as it is easier to perform
momentum transport experiments and then to calculate the 7 Thus by using the eq.4.34 the /# may
be found out without involving into the exhaustive and difficult heat transfer experiments.

4.4.2 The Chilton-Colburn analogy
The Reynolds analogy does not always give satisfactory results. Thus, Chilton and Colburn

experimentally modified the Reynolds’ analogy. The empirically modified Reynolds’ analogy is known
as Chilton-Colburn analogy and is given by eq.4.35,

f
St =2 (4.35a)
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It can be noted that for unit Prandtl number the Chilton-Colburn analogy becomes Reynolds
analogy.

4.4.3 The Pradntl analogy

In the turbulent core the transport is mainly by eddies and near the wall, that is laminar sub-layer,
the transport is by molecular diffusion. Therefore, Prandtl modified the above two analogies using
universal velocity profile while driving the analogy (eq. 4.36).

f
St=—7F— (4.36)
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4.4.4 The Van Karman analogy

Though Prandtl considered the laminar and turbulent laminar sublayers but did not consider the
buffer zone. Thus, Van Karman included the buffer zone into the Prandtl analogy to further improve
the analogy.
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