
2. Heat conduction concepts,
thermal resistance, and the
overall heat transfer coefficient

It is the fire that warms the cold, the cold that moderates the heat. . .the
general coin that purchases all things. . .

Don Quixote, M. de Cervantes, 1615

2.1 The heat diffusion equation

Objective

We must now develop some ideas that will be needed for the design of
heat exchangers. The most important of these is the notion of an overall
heat transfer coefficient. This is a measure of the general resistance of a
heat exchanger to the flow of heat, and usually it must be built up from
analyses of component resistances. Although we shall count radiation
among these resistances, this overall heat transfer coefficient is most
often dominated by convection and conduction.

We need to know values of h to handle convection. Calculating h
becomes sufficiently complex that we defer it to Chapters 6 and 7. For the
moment, we shall take the appropriate value of h as known information
and concentrate upon its use in the overall heat transfer coefficient.

The heat conduction component also becomes more complex than
the planar analyses we did in Chapter 1. But its calculation is within
our present scope. Therefore we devote this Chapter to deriving the
full heat conduction, or heat diffusion, equation, solving it in some fairly
straightforward cases, and using our results in the overall coefficient. We
undertake that task next.
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50 Heat conduction, thermal resistance, and the overall heat transfer coefficient §2.1

Figure 2.1 A three-dimensional, transient temperature field.

Consider the general temperature distribution in a three-dimensional
body as depicted in Fig. 2.1. For some reason, say heating from one
side, the temperature of the body varies with time and space. This field
T = T(x,y, z, t) or T(~r , t), defines instantaneous isothermal surfaces,
T1, T2, and so on.

We next consider a very important vector associated with the scalar,
T . The vector that has both the magnitude and direction of the maximum
increase of temperature at each point is called the temperature gradient,
∇T :

∇T ≡ ~i ∂T
∂x
+ ~j ∂T

∂y
+ ~k ∂T

∂z
(2.1)
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Fourier’s law

“Experience”—that is, physical observation—suggests two things about
the heat flow that results from temperature nonuniformities in a body.
These are:

~q
|~q| = −

∇T
|∇T |

{
This says that ~q and ∇T are exactly opposite one
another in direction

and

|~q| ∝ |∇T |
{

This says that the magnitude of the heat flux is di-
rectly proportional to the temperature gradient

Notice that the heat flux is now written as a quantity that has a specified
direction as well as a specified magnitude. Fourier’s law summarizes this
physical experience succinctly as

~q = −k∇T (2.2)

which resolves itself into three components:

qx = −k
∂T
∂x

qy = −k
∂T
∂y

qz = −k
∂T
∂z

The coefficient k—the thermal conductivity—also depends on position
and temperature in the most general case:

k = k[~r , T(~r , t)] (2.3)

Fortunately, most materials (though not all of them) are very nearly ho-
mogeneous. Thus we can usually write k = k(T). The assumption that
we really want to make is that k is constant. Whether or not that is legit-
imate must be determined in each case. As is apparent from Fig. 2.2 and
Fig. 2.3, k almost always varies with temperature. It always rises with T
in gases at low pressures, but it may rise or fall in metals or liquids. The
problem is that of assessing whether or not k is approximately constant
in the range of interest. We could safely take k to be a constant for iron
between 0◦ and 40◦C (see Fig. 2.2), but we would incur error between
−100◦ and 800◦C.

It is easy to prove (Problem 2.1) that if k varies linearly with T , and
if heat transfer is plane and steady, then q = k∆T/L, with k evaluated
at the average temperature in the plane. If heat transfer is not planar



Figure 2.2 Variation of thermal conductivity of metallic solids
with temperature
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Figure 2.3 The temperature dependence of the thermal con-
ductivity of liquids and gases that are either saturated or at 1
atm pressure.
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54 Heat conduction, thermal resistance, and the overall heat transfer coefficient §2.1

Figure 2.4 Control volume in a
heat-flow field.

or if k is not simply A + BT , it can be much more difficult to specify a
single accurate effective value of k. If ∆T is not large, one can still make a
reasonably accurate approximation using a constant average value of k.

Now that we have Fourier’s law in three dimensions, we see that heat
conduction is more complex than it appeared to be in Chapter 1. We
must now write the heat conduction equation in three dimensions. We
begin, as we did in Chapter 1, with the First Law statement, eqn. (1.3):

Q = dU
dt

(1.3)

This time we apply eqn. (1.3) to a three-dimensional control volume, as
shown in Fig. 2.4.1 The control volume is a finite region of a conducting
body, which we set aside for analysis. The surface is denoted as S and the
volume and the region as R; both are at rest. An element of the surface,
dS, is identified and two vectors are shown on dS: one is the unit normal
vector, ~n (with |~n| = 1), and the other is the heat flux vector, ~q = −k∇T ,
at that point on the surface.

We also allow the possibility that a volumetric heat release equal to
q̇(~r)W/m3 is distributed through the region. This might be the result of
chemical or nuclear reaction, of electrical resistance heating, of external
radiation into the region or of still other causes.

With reference to Fig. 2.4, we can write the heat conducted out of dS,
in watts, as

(−k∇T) · (~ndS) (2.4)

The heat generated (or consumed) within the region R must be added to
the total heat flow into S to get the overall rate of heat addition to R:

Q = −
∫
S
(−k∇T) · (~ndS)+

∫
R
q̇ dR (2.5)

1Figure 2.4 is the three-dimensional version of the control volume shown in Fig. 1.8.
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The rate of energy increase of the region R is

dU
dt
=
∫
R

(
ρc
∂T
∂t

)
dR (2.6)

where the derivative of T is in partial form because T is a function of
both ~r and t.

Finally, we combine Q, as given by eqn. (2.5), and dU/dt, as given by
eqn. (2.6), into eqn. (1.3). After rearranging the terms, we obtain∫

S
k∇T · ~ndS =

∫
R

[
ρc
∂T
∂t
− q̇

]
dR (2.7)

To get the left-hand side into a convenient form, we introduce Gauss’s
theorem, which converts a surface integral into a volume integral. Gauss’s
theorem says that if ~A is any continuous function of position, then∫

S
~A · ~ndS =

∫
R
∇ · ~AdR (2.8)

Therefore, if we identify ~A with (k∇T), eqn. (2.7) reduces to∫
R

(
∇ · k∇T − ρc ∂T

∂t
+ q̇

)
dR = 0 (2.9)

Next, since the region R is arbitrary, the integrand must vanish identi-
cally.2 We therefore get the heat diffusion equation in three dimensions:

∇ · k∇T + q̇ = ρc ∂T
∂t

(2.10)

The limitations on this equation are:

• Incompressible medium. (This was implied when no expansion
work term was included.)

• No convection. (The medium cannot undergo any relative motion.
However, it can be a liquid or gas as long as it sits still.)

2Consider
∫
f(x)dx = 0. If f(x) were, say, sin x, then this could only be true

over intervals of x = 2π or multiples of it. For eqn. (2.9) to be true for any range of
integration one might choose, the terms in parentheses must be zero everywhere.
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If the variation of kwith T is small, k can be factored out of eqn. (2.10)
to get

∇2T + q̇
k
= 1
α
∂T
∂t

(2.11)

This is a more complete version of the heat conduction equation [recall
eqn. (1.14)] and α is the thermal diffusivity which was discussed after
eqn. (1.14). The term∇2T ≡ ∇·∇T is called the Laplacian. It arises thus
in a Cartesian coordinate system:

∇ · k∇T ' k∇ ·∇T = k
(
~i
∂
∂x
+ ~j ∂
∂y
+ ~k ∂
∂x

)
·
(
~i
∂T
∂x
+ ~j ∂T
∂y
+ ~k∂T

∂z

)
or

∇2T = ∂
2T
∂x2

+ ∂
2T
∂y2

+ ∂
2T
∂z2

(2.12)

The Laplacian can also be expressed in cylindrical or spherical coor-
dinates. The results are:

• Cylindrical:

∇2T ≡ 1
r
∂
∂r

(
r
∂T
∂r

)
+ 1
r2

∂2T
∂θ2

+ ∂
2T
∂z2

(2.13)

• Spherical:

∇2T ≡1
r
∂2(rT)
∂r2

+ 1
r2 sinθ

∂
∂θ

(
sinθ

∂T
∂θ

)
+ 1

r2 sin2 θ
∂2T
∂φ2

(2.14a)

or

≡ 1
r2

∂
∂r

(
r2 ∂T
∂r

)
+ 1
r2 sinθ

∂
∂θ

(
sinθ

∂T
∂θ

)
+ 1

r2 sin2 θ
∂2T
∂φ2

(2.14b)

where the coordinates are as described in Fig. 2.5.

2.2 Solutions of the heat diffusion equation

We are now in position to calculate the temperature distribution and/or
heat flux in bodies with the help of the heat diffusion equation. In every



Figure 2.5 Cylindrical and spherical coordinate systems.
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58 Heat conduction, thermal resistance, and the overall heat transfer coefficient §2.2

case, we first calculate T(~r , t). Then, if we want the heat flux as well, we
differentiate T to get q from Fourier’s law.

The heat diffusion equation is a partial differential equation (p.d.e.)
and the task of solving it may seem difficult, but we can actually do a
lot with fairly elementary mathematical tools. For one thing, in one-
dimensional steady-state situations the heat diffusion equation becomes
an ordinary differential equation (o.d.e.); for another, the equation is lin-
ear and therefore not too formidable, in any case. Our procedure can be
laid out, step by step, with the help of the following example.

Example 2.1 Basic Method

A large, thin concrete slab of thickness L is “setting.” Setting is an
exothermic process that releases q̇ W/m3. The outside surfaces are
kept at the ambient temperature, so Tw = T∞. What is the maximum
internal temperature?

Solution.

Step 1. Pick the coordinate scheme that best fits the problem and iden-
tify the independent variables that determine T. In the example,
T will probably vary only along the thin dimension, which we will
call the x-direction. (We should want to know that the edges are
insulated and that L was much smaller than the width or height.
If they are, this assumption should be quite good.) Since the in-
terior temperature will reach its maximum value when the pro-
cess becomes steady, we write T = T(x only).

Step 2. Write the appropriate d.e., starting with one of the forms of
eqn. (2.11).

∂2T
∂x2

+ ∂
2T
∂y2

+ ∂
2T
∂z2︸ ︷︷ ︸

=0, since
T ≠ T(y or z)

+ q̇
k
= 1

α
∂T
∂t︸ ︷︷ ︸

= 0, since
steady

Therefore, since T = T(x only), the equation reduces to the
ordinary d.e.

d2T
dx2

= − q̇
k

Step 3. Obtain the general solution of the d.e. (This is usually the
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easiest step.) We simply integrate the d.e. twice and get

T = − q̇
2k
x2 + C1x + C2

Step 4. Write the “side conditions” on the d.e.—the initial and bound-
ary conditions. This is the trickiest part and the one that most se-
riously tests our physical or "practical" understanding any heat
conduction problem.

Normally, we have to make two specifications of temperature
on each position coordinate and one on the time coordinate to
get rid of the constants of integration in the general solution.
(These matters are discussed at greater length in Chapter 4.)

In this case we know two boundary conditions:

T(x = 0) = Tw and T(x = L) = Tw

Very Important Warning: Never, never introduce inaccessible
information in a boundary or initial condition. Always stop and
ask yourself, “Would I have access to a numerical value of the
temperature (or other data) that I specify at a given position or
time?” If the answer is no, then your result will be useless.

Step 5. Substitute the general solution in the boundary and initial con-
ditions and solve for the constants. This process gets very com-
plicated in the transient and multidimensional cases. Numerical
methods are often needed to solve the problem. However, the
steady one-dimensional problems are usually easy. In the exam-
ple, by evaluating at x = 0 and x = L, we get:

Tw = −0+ 0+ C2 so C2 = Tw

Tw = −
q̇L2

2k
+ C1L+ C2︸ ︷︷ ︸

=Tw

so C1 =
q̇L
2k

Step 6. Put the calculated constants back in the general solution to get
the particular solution to the problem. In the example problem
we obtain:

T = − q̇
2k
x2 + q̇

2k
Lx + Tw
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Figure 2.6 Temperature distribution in the setting concrete
slab Example 2.1.

When we put this in neat dimensionless form, we can plot the
result in Fig. 2.6 without having to know specific values of its
parameters:

T − Tw
q̇L2

/
k
= 1

2

[
x
L
−
(
x
L

)2
]

(2.15)

Step 7. Play with the solution—look it over—see what it has to tell
you. Make any checks you can think of to be sure it is correct.
In this case, the resulting temperature distribution is parabolic
and, as we would expect, symmetrical. It satisfies the boundary
conditions at the wall and maximizes in the center. By nondi-
mensionalizing the result, we can represent all situations with
a simple curve. That is highly desirable when the calculations
are not simple, as they are here. (Even here T actually depends
on five different things, and its solution is a single curve on a
two-coordinate graph.)

Finally, we check to see if the heat flux at the wall is correct:

qwall = −k
∂T
∂x

∣∣∣∣
x=0

= k
[
q̇
k
x − q̇L

2k

]
x=0

= − q̇L
2

Thus, half of the total energy generated in the slab comes out
of the front side, as we would expect. The solution appears to
be correct.
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Step 8. If the temperature field is now correctly established, we can,
if we wish, calculate the heat flux at any point in the body by
substituting T(~r , t) back into Fourier’s law. We did this already,
in Step 7, to check our solution.

We offer additional examples in this section and the following one. In
the process, we develop some important results for future use.

Example 2.2 The Simple Slab

A slab shown in Fig. 2.7 is at a steady state with dissimilar temper-
atures on either side and no internal heat generation. We want the
temperature distribution and the heat flux through it.

Solution. These can be found quickly by following the steps set
down in Example 2.1:

Step 1. T = T(x) for steady x-direction heat flow

Step 2.
d2T
dx2

= 0, the steady 1-D heat equation with no q̇

Step 3. T = C1x + C2 is the general solution of that equation

Step 4. T(x = 0) = T1 and T(x = L) = T2 are the b.c.s

Figure 2.7 Heat conduction in a slab (Example 2.2).
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Figure 2.8 Ohm’s law analogy to conduction through a slab.

Step 5. T1 = 0+ C2, so C2 = T1; and T2 = C1L+ C2, so C1 =
T2 − T1

L

Step 6. T = T1 +
T2 − T1

L
x; or

T − T1

T2 − T1
= x
L

Step 7. We note that the solution satisfies the boundary conditions
and that the temperature profile is linear.

Step 8. q = −kdT
dx
= −k d

dx

(
T1 −

T1 − T2

L
x
)

so that q = k∆T
L

This result, which is the simplest heat conduction solution, calls to
mind Ohm’s law. Thus, if we rearrange it:

Q = ∆T
L/kA

is like I = E
R

where L/kA assumes the role of a thermal resistance, to which we give
the symbol Rt . Rt has the dimensions of (K/W). Figure 2.8 shows how we
can represent heat flow through the slab with a diagram that is perfectly
analogous to an electric circuit.
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Figure 2.9 The one-dimensional flow of
current.

2.3 Thermal resistance and the electrical analogy

Fourier’s, Fick’s, and Ohm’s laws

Fourier’s law has several extremely important analogies in other kinds of
physical behavior, of which the electrical analogy is only one. These anal-
ogous processes provide us with a good deal of guidance in the solution
of heat transfer problems. And, conversely, heat conduction analyses
can often be adapted to describe those processes.

Let us first consider Ohm’s law in three dimensions:

flux of electrical charge =
~I
A
≡ ~J = −γ∇V (2.16)

~I amperes is the vectorial electrical current, A is an area normal to the
current vector, ~J is the flux of current or current density, γ is the electrical
conductivity in cm/ohm·cm2, and V is the voltage.

To apply eqn. (2.16) to a one-dimensional current flow, as pictured in
Fig. 2.9, we write eqn. (2.16) as

J = −γdV
dx

= γ∆V
L
, (2.17)

but ∆V is the applied voltage, E, and the resistance of the wire is R ≡
L
/
γA. Then, since I = J A, eqn. (2.17) becomes

I = E
R

(2.18)

which is the familiar, but restrictive, one-dimensional statement of Ohm’s
law.

Fick’s law is another analogous relation. It states that during mass
diffusion, the flux, ~j1, of a dilute component, 1, into a second fluid, 2, is
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proportional to the gradient of its mass concentration, m1. Thus

~j1 = −ρD12∇m1 (2.19)

where the constant D12 is the binary diffusion coefficient.

Example 2.3

Air fills a thin tube 1 m in length. There is a small water leak at one
end where the water vapor concentration builds to a mass fraction of
0.01. A desiccator maintains the concentration at zero on the other
side. What is the steady flux of water from one side to the other if
D12 is 2.84× 10−5 m2/s and ρ = 1.18 kg/m3?

Solution.∣∣∣~jwater vapor

∣∣∣ = 1.18
kg
m3

(
2.84× 10−5 m2

s

)(
0.01 kg H2O/kg mixture

1 m

)
= 3.35× 10−7 kg

m2·s

Contact resistance

The usefulness of the electrical resistance analogy is particularly appar-
ent at the interface of two conducting media. No two solid surfaces ever
form perfect thermal contact when they are pressed together. Since some
roughness is always present, a typical plane of contact will always include
tiny air gaps as shown in Fig. 2.10 (which is drawn with a highly exag-
gerated vertical scale). Heat transfer follows two paths through such an
interface. Conduction through points of solid-to-solid contact is very ef-
fective, but conduction through the gas-filled interstices, which have low
thermal conductivity, can be very poor. Thermal radiation across the
gaps is also inefficient.

We treat the contact surface by placing an interfacial conductance, hc ,
in series with the conducting materials on either side. The coefficient hc
is similar to a heat transfer coefficient and has the same units, W/m2K. If
∆T is the temperature difference across an interface of area A, then Q =
Ahc∆T . It follows thatQ = ∆T/Rt for a contact resistance Rt = 1/(hcA)
in K/W.
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Figure 2.10 Heat transfer through the contact plane between
two solid surfaces.

The interfacial conductance, hc , depends on the following factors:

• The surface finish and cleanliness of the contacting solids.

• The materials that are in contact.

• The pressure with which the surfaces are forced together. This may
vary over the surface, for example, in the vicinity of a bolt.

• The substance (or lack of it) in the interstitial spaces. Conductive
shims or fillers can raise the interfacial conductance.

• The temperature at the contact plane.

The influence of contact pressure is usually a modest one up to around
10 atm in most metals. Beyond that, increasing plastic deformation of
the local contact points causes hc to increase more dramatically at high
pressure. Table 2.1 gives typical values of contact resistances which bear
out most of the preceding points. These values have been adapted from
[2.1, Chpt. 3] and [2.2]. Theories of contact resistance are discussed in
[2.3] and [2.4].

Example 2.4

Heat flows through two stainless steel slabs (k = 18 W/m·K) that are
pressed together. The slab area is A = 1 m2. How thick must the
slabs be for contact resistance to be negligible?
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Table 2.1 Some typical interfacial conductances for normal
surface finishes and moderate contact pressures (about 1 to 10
atm). Air gaps not evacuated unless so indicated.

Situation hc (W/m2K)

Iron/aluminum (70 atm pressure) 45,000

Copper/copper 10,000− 25,000
Aluminum/aluminum 2,200− 12,000
Graphite/metals 3,000− 6,000
Ceramic/metals 1,500− 8,500
Stainless steel/stainless steel 2,000− 3,700
Ceramic/ceramic 500− 3,000
Stainless steel/stainless steel

(evacuated interstices)
200− 1,100

Aluminum/aluminum (low pressure
and evacuated interstices)

100− 400

Solution. With reference to Fig. 2.11, the total or equivalent resis-
tance is found by adding these resistances, which are in series:

Rtequiv =
L
kA
+ 1
hcA

+ L
kA
= 1
A

(
L
18
+ 1
hc
+ L

18

)
Since hc is about 3,000 W/m2K,

2L
18

must be � 1
3000

= 0.00033

Thus, Lmust be large compared to 18(0.00033)/2 = 0.003 m if contact
resistance is to be ignored. If L = 3 cm, the error is about 10%.

Resistances for cylinders and for convection

As we continue developing our method of solving one-dimensional heat
conduction problems, we find that other avenues of heat flow may also be
expressed as thermal resistances, and introduced into the solutions that
we obtain. We also find that, once the heat conduction equation has been
solved, the results themselves may be used as new thermal resistances.
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Figure 2.11 Conduction through two
unit-area slabs with a contact resistance.

Example 2.5 Radial Heat Conduction in a Tube

Find the temperature distribution and the heat flux for the long hollow
cylinder shown in Fig. 2.12.

Solution.

Step 1. T = T(r)

Step 2.

1
r
∂
∂r

(
r
∂T
∂r

)
+ 1
r2

∂2T
∂φ2

+ ∂
2T
∂z2︸ ︷︷ ︸

=0, since T ≠ T(φ, z)

+ q̇
k︸︷︷︸
=0

= 1
α
∂T
∂t︸ ︷︷ ︸

=0, since steady

Step 3. Integrate once: r
∂T
∂r
= C1; integrate again: T = C1 ln r + C2

Step 4. T(r = ri) = Ti and T(r = ro) = To
Step 5.

Ti = C1 ln ri + C2

To = C1 ln ro + C2

=⇒


C1 =

Ti − To
ln(ri/ro)

= − ∆T
ln(ro/ri)

C2 = Ti +
∆T

ln(ro/ri)
ln ri

Step 6. T = Ti −
∆T

ln(ro/ri)
(ln r − ln ri) or

T − Ti
To − Ti

= ln(r/ri)
ln(ro/ri)

(2.20)
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Figure 2.12 Heat transfer through a cylinder with a fixed wall
temperature (Example 2.5).

Step 7. The solution is plotted in Fig. 2.12. We see that the temper-
ature profile is logarithmic and that it satisfies both boundary
conditions. Furthermore, it is instructive to see what happens
when the wall of the cylinder is very thin, or when ri/ro is close
to 1. In this case:

ln(r/ri) '
r
ri
− 1 = r − ri

ri

and
ln(ro/ri) '

ro − ri
ri

Thus eqn. (2.20) becomes

T − Ti
To − Ti

= r − ri
ro − ri

which is a simple linear profile. This is the same solution that
we would get in a plane wall.

Step 8. At any station, r , with ∆T = Ti − To:

qradial = −k
∂T
∂r
= + k∆T

ln(ro/ri)
1
r



§2.3 Thermal resistance and the electrical analogy 69

So the heat flux falls off inversely with radius. That is reason-
able, since the same heat flow must pass through an increasingly
large surface as the radius increases. Let us see if this is the case
for a cylinder of length l:

Q (W) = (2πrl)q = 2πkl∆T
ln(ro/ri)

≠ f(r) (2.21)

Finally, we again recognize Ohm’s law in this result and write
the thermal resistance for a cylinder:

Rtcyl =
ln(ro/ri)

2πlk

(
K
W

)
(2.22)

This can be compared with the resistance of a plane wall:

Rtwall =
L
kA

(
K
W

)
Both resistances are inversely proportional to k, but each re-
flects a different geometry.

In the preceding examples, the boundary conditions were all the same—
a temperature specified at an outer edge. Next let us suppose that the
temperature is specified in the environment away from a body, with a
heat transfer coefficient between the environment and the body.

Example 2.6 A Convective Boundary Condition

A convective heat transfer coefficient around the outside of the cylin-
der in Example 2.5 provides thermal resistance between the cylinder
and an environment at T = T∞, as shown in Fig. 2.13. Find the tem-
perature distribution and heat flux in this case.

Solution.

Step 1 through 3. These are the same as in Example 2.5.

Step 4. The first boundary condition is T(r = ri) = Ti. The second
boundary condition must be expressed as an energy balance at
the outer wall (recall Section 1.3).

qconvection = qconduction
at the wall
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Figure 2.13 Heat transfer through a cylinder with a convective
boundary condition (Example 2.6).

or

h(T − T∞)r=ro = −k
∂T
∂r

∣∣∣∣
r=ro

Step 5. From the first boundary condition we obtain Ti = C1 ln ri +
C2. It is easy to make mistakes when we substitute the general
solution into the second boundary condition, so we will do it in
detail:

h
[
(C1 ln r + C2)− T∞

]
r=ro

= −k
[
∂
∂r
(C1 ln r + C2)

]
r=ro

(2.23)

A common error is to substitute T = To on the lefthand side
instead of substituting the entire general solution. That will do
no good, because To is not an accessible piece of information.
Equation (2.23) reduces to:

h(T∞ − C1 ln ro − C2) =
kC1

ro

When we combine this with the result of the first boundary con-
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Figure 2.14 Thermal circuit with two
resistances.

dition to eliminate C2:

C1 = −
Ti − T∞

k
/
(hro)+ ln(ro/ri)

= T∞ − Ti
1/Bi+ ln(ro/ri)

Then

C2 = Ti −
T∞ − Ti

1/Bi + ln(ro/ri)
ln ri

Step 6.

T = T∞ − Ti
1/Bi + ln(ro/ri)

ln(r/ri)+ Ti

This can be rearranged in fully dimensionless form:

T − Ti
T∞ − Ti

= ln(r/ri)
1/Bi + ln(ro/ri)

(2.24)

Step 7. Let us fix a value of ro/ri—say, 2—and plot eqn. (2.24) for
several values of the Biot number. The results are included
in Fig. 2.13. Some very important things show up in this plot.
When Bi � 1, the solution reduces to the solution given in Ex-
ample 2.5. It is as though the convective resistance to heat flow
were not there. That is exactly what we anticipated in Section 1.3
for large Bi. When Bi� 1, the opposite is true: (T−Ti)

/
(T∞−Ti)

remains on the order of Bi, and internal conduction can be ne-
glected. How big is big and how small is small? We do not
really have to specify exactly. But in this case Bi < 0.1 signals
constancy of temperature inside the cylinder with about ±3%.
Bi > 20 means that we can neglect convection with about 5%
error.

Step 8. qradial = −k
∂T
∂r
= k Ti − T∞

1/Bi + ln(ro/ri)
1
r
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Figure 2.15 Thermal circuit for an
insulated tube.

This can be written in terms ofQ (W) = qradial (2πrl) for a cylin-
der of length l:

Q = Ti − T∞
1

h2πrol
+ ln(ro/ri)

2πkl

= Ti − T∞
Rtconv + Rtcond

(2.25)

Equation (2.25) is once again analogous to Ohm’s law. But this time
the denominator is the sum of two thermal resistances, as would be
the case in a series circuit. We accordingly present the analogous
electrical circuit in Fig. 2.14.

The presence of convection on the outside surface of the cylinder
causes a new thermal resistance of the form

Rtconv =
1

hA
(2.26)

where A is the surface area over which convection occurs.

Example 2.7 Critical Radius of Insulation

An interesting consequence of the preceding result can be brought out
with a specific example. Suppose that we insulate a 0.5 cm O.D. copper
steam line with 85% magnesia to prevent the steam from condensing
too rapidly. The steam is under pressure and stays at 150◦C. The
copper is thin and highly conductive—obviously a tiny resistance in
series with the convective and insulation resistances, as we see in
Fig. 2.15. The condensation of steam inside the tube also offers very
little resistance.3 But on the outside, a heat transfer coefficient of h

3Condensation heat transfer is discussed in Chapter 8. It turns out thath is generally
enormous during condensation so that Rtcondensation is tiny.
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= 20 W/m2K offers fairly high resistance. It turns out that insulation
can actually improve heat transfer in this case.

The two significant resistances, for a cylinder of unit length (l =
1 m), are

Rtcond =
ln(ro/ri)

2πkl
= ln(ro/ri)

2π(0.074)
K/W

Rtconv =
1

2πroh
= 1

2π(20)ro
K/W

Figure 2.16 is a plot of these resistances and their sum. A very inter-
esting thing occurs here. Rtconv falls off rapidly when ro is increased,
because the outside area is increasing. Accordingly, the total resis-
tance passes through a minimum in this case. Will it always do so?
To find out, we differentiate eqn. (2.25), again setting l = 1 m:

dQ
dro

= (Ti − T∞)(
1

2πroh
+ ln(ro/ri)

2πk

)2

(
− 1

2πr2
oh
+ 1

2πkro

)
= 0

When we solve this for the value of ro = rcrit at which Q is maximum
and the total resistance is minimum, we obtain

Bi = 1 = hrcrit

k
(2.27)

In the present example, adding insulation will increase heat loss in-
stead of reducing it, until rcrit = k

/
h = 0.0037 m or rcrit/ri = 1.48.

Indeed, insulation will not even start to do any good until ro/ri = 2.32
or ro = 0.0058 m. We call rcrit the critical radius of insulation.

There is an interesting catch here. For most cylinders, rcrit < ri and
the critical radius idiosyncrasy is of no concern. If our steam line had a 1
cm outside diameter, the critical radius difficulty would not have arisen.
When cooling smaller diameter cylinders, such as electrical wiring, the
critical radius must be considered, but one need not worry about it in
the design of most large process equipment.

Resistance for thermal radiation

We saw in Chapter 1 that the net radiation exchanged by two objects is
given by eqn. (1.34):

Qnet = A1F1–2σ
(
T 4

1 − T 4
2

)
(1.34)
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Figure 2.16 The critical radius of insulation (Example 2.7),
written for a cylinder of unit length (l = 1 m).

When T1 and T2 are close, we can approximate this equation using a
radiation heat transfer coefficient, hrad. Specifically, suppose that the
temperature difference, ∆T = T1 − T2, is small compared to the mean
temperature, Tm = (T1 + T2)

/
2. Then we can make the following expan-

sion and approximation:

Qnet = A1F1–2σ
(
T 4

1 − T 4
2

)
= A1F1–2σ(T 2

1 + T 2
2 )(T

2
1 − T 2

2 )

= A1F1–2σ (T 2
1 + T 2

2 )︸ ︷︷ ︸
= 2T2

m + (∆T)2/2

(T1 + T2)︸ ︷︷ ︸
=2Tm

(T1 − T2)︸ ︷︷ ︸
=∆T

� A1

(
4σT 3

mF1–2

)
︸ ︷︷ ︸

≡hrad

∆T (2.28)

where the last step assumes that (∆T)2/2 � 2T 2
m or (∆T/Tm)2/4 � 1.

Thus, we have identified the radiation heat transfer coefficient

Qnet = A1hrad∆T

hrad = 4σT 3
mF1–2

 for
(
∆T

/
Tm

)2 /
4� 1 (2.29)
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This leads us immediately to the introduction of a radiation thermal re-
sistance, analogous to that for convection:

Rtrad =
1

A1hrad
(2.30)

For the special case of a small object (1) in a much larger environment
(2), the transfer factor is given by eqn. (1.35) as F1–2 = ε1, so that

hrad = 4σT 3
mε1 (2.31)

If the small object is black, its emittance is ε1 = 1 and hrad is maximized.
For a black object radiating near room temperature, say Tm = 300 K,

hrad = 4(5.67× 10−8)(300)3 � 6 W/m2K

This value is of approximately the same size as h for natural convection
into a gas at such temperatures. Thus, the heat transfer by thermal radi-
ation and natural convection into gases are similar. Both effects must be
taken into account. In forced convection in gases, on the other hand, h
might well be larger than hrad by an order of magnitude or more, so that
thermal radiation can be neglected.

Example 2.8

An electrical resistor dissipating 0.1 W has been mounted well away
from other components in an electronical cabinet. It is cylindrical
with a 3.6 mm O.D. and a length of 10 mm. If the air in the cabinet
is at 35◦C and at rest, and the resistor has h = 13 W/m2K for natural
convection and ε = 0.9, what is the resistor’s temperature? Assume
that the electrical leads are configured so that little heat is conducted
into them.

Solution. The resistor may be treated as a small object in a large
isothermal environment. To compute hrad, let us estimate the resis-
tor’s temperature as 50◦C. Then

Tm = (35+ 50)/2 � 43◦C = 316 K

so

hrad = 4σT 3
mε = 4(5.67× 10−8)(316)3(0.9) = 6.44 W/m2K
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Heat is lost by natural convection and thermal radiation acting in
parallel. To find the equivalent thermal resistance, we combine the
two parallel resistances as follows:

1
Rtequiv

= 1
Rtrad

+ 1
Rtconv

= Ahrad +Ah = A
(
hrad + h

)
Thus,

Rtequiv =
1

A
(
hrad + h

)
A calculation shows A = 133 mm2 = 1.33× 10−4 m2 for the resistor
surface. Thus, the equivalent thermal resistance is

Rtequiv =
1

(1.33× 10−4)(13+ 6.44)
= 386.8 K/W

Since

Q = Tresistor − Tair

Rtequiv

We find

Tresistor = Tair +Q · Rtequiv = 35+ (0.1)(386.8) = 73.68 ◦C

We guessed a resistor temperature of 50◦C in finding hrad. Re-
computing with this higher temperature, we have Tm = 327 K and
hrad = 7.17 W/m2K. If we repeat the rest of the calculation, we get a
new value Tresistor = 72.3◦C. Further iteration is not needed.

Since the use of hrad is an approximation, we should check its
applicability:

1
4

(
∆T
Tm

)2

= 1
4

(
72.3− 35.0

327

)2

= 0.00325� 1

In this case, the approximation is a very good one.

Example 2.9

Suppose that power to the resistor in Example 2.8 is turned off. How
long does it take to cool? The resistor has k � 10 W/m·K, ρ �
2000 kg/m3, and cp � 700 J/kg·K.

Solution. The lumped capacity model, eqn. (1.22), may be appli-
cable. To find out, we check the resistor’s Biot number, noting that
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Tresistor

Qconv Qrad

Qconv

Qrad

Tresistor Tair

Rtconv
= 1

– 
hA

Rtrad
= 1

h
rad

A

Figure 2.17 An electrical resistor cooled
by convection and radiation.

the parallel convection and radiation processes have an effective heat
transfer coefficient heff = h+ hrad = 20.17 W/m2K. Then,

Bi = heffro
k

= (20.17)(0.0036/2)
10

= 0.0036� 1

so eqn. (1.22) can be used to describe the cooling process. The time
constant is

T = ρcpV
heffA

= (2000)(700)π(0.010)(0.0036)2/4
(20.17)(1.33× 10−4)

= 53.1 s

From eqn. (1.22) with T0 = 72.3◦C

Tresistor = 35.0+ (72.3− 35.0)e−t/53.1 ◦C

Ninety-five percent of the total temperature drop has occured when
t = 3T = 159 s.
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2.4 Overall heat transfer coefficient, U
Definition

We often want to transfer heat through composite resistances, such as
the series of resistances shown in Fig. 2.18. It is very convenient to have
a number, U , that works like this4:

Q = UA∆T (2.32)

This number, called the overall heat transfer coefficient, is defined largely
by the system, and in many cases it proves to be insensitive to the oper-
ating conditions of the system.

In Example 2.6, for instance, two resistances are in series. We can use
the value Q given by eqn. (2.25) to get

U = Q(W)[
2πrol (m2)

]
∆T (K)

= 1
1

h
+ ro ln(ro/ri)

k

(W/m2K) (2.33)

We have based U on the outside area, Ao = 2πrol, in this case. We might
instead have based it on inside area, Ai = 2πril, and obtained

U = 1
ri
hro

+ ri ln(ro/ri)
k

(2.34)

It is therefore important to remember which area an overall heat trans-
fer coefficient is based on. It is particularly important that A and U be
consistent when we write Q = UA∆T .

In general, for any composite resistance, the overall heat transfer co-
efficient may be obtained from the equivalent resistance. The equivalent
resistance is calculated taking account of series and parallel resistors,
as in Examples 2.4 and 2.8. Then, because Q = ∆T/Rtequiv = UA∆T , it
follows that UA = 1/Rtequiv .

Example 2.10

Estimate the overall heat transfer coefficient for the tea kettle shown
in Fig. 2.19. Note that the flame convects heat to the thin aluminum.
The heat is then conducted through the aluminum and finally con-
vected by boiling into the water.

4This U must not be confused with internal energy. The two terms should always
be distinct in context.
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Figure 2.18 A thermal circuit with many
resistances in series. The equivalent
resistance is Rtequiv =

∑
i Ri.

Figure 2.19 Heat transfer through the bottom of a tea kettle.

Solution. We need not worry about deciding which area to base A
on, in this case, because the area normal to the heat flux vector does
not change. We simply write the heat flow

Q = ∆T∑
Rt
= Tflame − Tboiling water

1

hA
+ L
kAlA

+ 1

hbA
and apply the definition of U

U = Q
A∆T

= 1
1

h
+ L
kAl
+ 1

hb
Let us see what typical numbers would look like in this example: h

might be around 200 W/m2K; L
/
kAl might be 0.001 m/(160 W/m·K) or

1/160,000 W/m2K; andhb is quite large—perhaps about 5000 W/m2K.
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Thus:

U ' 1
1

200
+ 1

160,000
+ 1

5000

= 192.1 W/m2K

It is clear that the first resistance is dominant, as is shown in Fig. 2.19.
Notice that in such cases

UA -→ 1/Rtdominant (2.35)

where A is any area (inside or outside) in the thermal circuit.

Experiment 2.1

Boil water in a paper cup over an open flame and explain why you can
do so. [Recall eqn. (2.35) and see Problem 2.12.]

Example 2.11

A wall consists of alternating layers of pine and sawdust, as shown
in Fig. 2.20). The sheathes on the outside have negligible resistance
and h is known on the sides. Compute Q and U for the wall.

Solution. So long as the wood and the sawdust do not differ dramat-
ically from one another in thermal conductivity, we can approximate
the wall as a parallel resistance circuit, as shown in the figure.5 The
equivalent thermal resistance of the circuit is

Rtequiv = Rtconv +
1(

1
Rtpine

+ 1
Rtsawdust

)+ Rtconv

Thus

Q = ∆T
Rtequiv

=
T∞1 − T∞r

1

hA
+

1(
kpAp
L
+
ksAs
L

)+ 1

hA

5For this approximation to be exact, the resistances must be equal. If they differ
radically, the problem must be treated as two-dimensional.



§2.4 Overall heat transfer coefficient, U 81

Figure 2.20 Heat transfer through a composite wall.

and

U = Q
A∆T

=
1

2

h
+

1(
kp
L
Ap
A
+
ks
L
As
A

)

The approach illustrated in this example is very widely used in calcu-
latingU values for the walls and roofs houses and buildings. The thermal
resistances of each structural element — insulation, studs, siding, doors,
windows, etc. — are combined to calculateU or Rtequiv , which is then used
together with weather data to estimate heating and cooling loads [2.5].

Typical values of U

In a fairly general use of the word, a heat exchanger is anything that
lies between two fluid masses at different temperatures. In this sense a
heat exchanger might be designed either to impede or to enhance heat
exchange. Consider some typical values of U shown in Table 2.2, which
were assembled from a variety of technical sources. If the exchanger
is intended to improve heat exchange, U will generally be much greater
than 40 W/m2K. If it is intended to impede heat flow, it will be less than
10 W/m2K—anywhere down to almost perfect insulation. You should
have some numerical concept of relative values of U , so we recommend
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Table 2.2 Typical ranges or magnitudes of U

Heat Exchange Configuration U (W/m2K)

Walls and roofs dwellings with a 24 km/h
outdoor wind:
• Insulated roofs 0.3−2
• Finished masonry walls 0.5−6
• Frame walls 0.3−5
• Uninsulated roofs 1.2−4

Single-pane windows ∼ 6†

Air to heavy tars and oils As low as 45
Air to low-viscosity liquids As high as 600
Air to various gases 60−550
Steam or water to oil 60−340
Liquids in coils immersed in liquids 110−2,000
Feedwater heaters 110−8,500
Air condensers 350−780
Steam-jacketed, agitated vessels 500−1,900
Shell-and-tube ammonia condensers 800−1,400
Steam condensers with 25◦C water 1,500−5,000
Condensing steam to high-pressure

boiling water
1,500−10,000

† Main heat loss is by infiltration.

that you scrutinize the numbers in Table 2.2. Some things worth bearing
in mind are:

• The fluids with low thermal conductivities, such as tars, oils, or any
of the gases, usually yield low values of h. When such fluid flows
on one side of an exchanger, U will generally be pulled down.

• Condensing and boiling are very effective heat transfer processes.
They greatly improve U but they cannot override one very small
value of h on the other side of the exchange. (Recall Example 2.10.)

• For a high U , all resistances in the exchanger must be low.

• The highly conducting liquids, such as water and liquid metals, give
high values of h and U .
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Fouling resistance

Figure 2.21 shows one of the simplest forms of a heat exchanger—a pipe.
The inside is new and clean on the left, but on the right it has built up a
layer of scale. In conventional freshwater preheaters, for example, this
scale is typically MgSO4 (magnesium sulfate) or CaSO4 (calcium sulfate)
which precipitates onto the pipe wall after a time. To account for the re-
sistance offered by these buildups, we must include an additional, highly
empirical resistance when we calculate U . Thus, for the pipe shown in
Fig. 2.21,

U
∣∣∣older pipe

based on Ai
=

1

1

hi
+
ri ln(ro/rp)
kinsul

+
ri ln(rp/ri)
kpipe

+
ri
roho

+ Rf

where Rf is a fouling resistance for a unit area of pipe (in m2K/W). And
clearly

Rf ≡
1
Uold

− 1
Unew

(2.36)

Some typical values of Rf are given in Table 2.3. These values have
been adapted from [2.6] and [2.7]. Notice that fouling has the effect of
adding a resistance in series on the order of 10−4 m2K/W. It is rather like
another heat transfer coefficient, hf , on the order of 10,000 W/m2K in
series with the other resistances in the exchanger.

Figure 2.21 The fouling of a pipe.
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Table 2.3 Some typical fouling resistances for a unit area.

Fluid and Situation
Fouling Resistance

Rf (m2K/W)

Distilled water 0.0001
Seawater 0.0001− 0.0004
Treated boiler feedwater 0.0001− 0.0002
Clean river or lake water 0.0002− 0.0006
About the worst waters used in heat

exchangers
< 0.0020

No. 6 fuel oil 0.0001
Transformer or lubricating oil 0.0002
Most industrial liquids 0.0002
Most refinery liquids 0.0002− 0.0009
Steam, non-oil-bearing 0.0001
Steam, oil-bearing (e.g., turbine

exhaust)
0.0003

Most stable gases 0.0002− 0.0004
Flue gases 0.0010− 0.0020
Refrigerant vapors (oil-bearing) 0.0040

The tabulated values of Rf are given to only one significant figure be-
cause they are very approximate. Clearly, exact values would have to be
referred to specific heat exchanger configurations, to particular fluids, to
fluid velocities, to operating temperatures, and to age [2.8, 2.9]. The re-
sistance generally drops with increased velocity and increases with tem-
perature and age. The values given in the table are based on reasonable
maintenance and the use of conventional shell-and-tube heat exchangers.
With misuse, a given heat exchanger can yield much higher values of Rf .

Notice too, that if U Ü 1,000 W/m2K, fouling will be unimportant
because it will introduce a negligibly small resistance in series. Thus,
in a water-to-water heat exchanger, for which U is on the order of 2000
W/m2K, fouling might be important; but in a finned-tube heat exchanger
with hot gas in the tubes and cold gas passing across the fins on them, U
might be around 200 W/m2K, and fouling will be usually be insignificant.


