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Parallel Processing

• So far: focused on performance of a single instruction stream
– ILP exploits parallelism among the instructions of this stream
– Needs to resolve control, data, and memory dependencies

• How do we get further improvements in performance?
– Exploit parallelism among multiple instruction streams
– Multithreading: Streams run on one CPU

• Typically, share resources such as functional units, caches, etc.
• Per-thread register set

– Multiprocessing: Streams run on multiple CPUs
• Each CPU can itself be multithreaded

– Common issues: 
• synchronization between threads
• consistency of data in caches (more generally, communication)

• NYU Course: G22.3033 Architecture and Programming of Parallel Computers 
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Parallel Computers

• Definition: “A parallel computer is a collection of processing 
elements that cooperate and communicate to solve large problems 
fast.”

Almasi and Gottlieb, Highly Parallel Computing ,1989

• Questions about parallel computers:
– How large a collection?
– How powerful are processing elements?
– How do they cooperate and communicate?
– How are data transmitted? 
– What type of interconnection?
– What are HW and SW primitives for programmer?
– Does it translate into performance?
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What level Parallelism?

• Bit level parallelism: 1970 to ~1985
– 4 bits, 8 bit, 16 bit, 32 bit microprocessors

• Instruction level parallelism (ILP): 
~1985 through today

– Pipelining
– Superscalar
– VLIW
– Out-of-Order execution
– Limits to benefits of ILP?

• Process Level or Thread level parallelism; mainstream for 
general purpose computing?

– Servers 
– Highend Desktop dual processor PC  
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Why Multiprocessors?

1. Microprocessors as the fastest CPUs
• Collecting several much easier than redesigning 1

2. Complexity of current microprocessors
• Do we have enough ideas to sustain 1.5X/yr?
• Can we deliver such complexity on schedule?

3. Slow (but steady) improvement in parallel software (scientific apps, 
databases, OS)

4. Emergence of embedded and server markets driving 
microprocessors in addition to desktops
• Embedded functional parallelism, producer/consumer model
• Server figure of merit is tasks per hour vs. latency
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TOP500 Supercomputers (top500.org)

• List of top 500 supercomputers published twice a year 
• The latest list shows a major shake-up of the TOP10 since last report
• Only six of the TOP10 systems from November 2004 are still large

enough to hold on to a TOP10 position, four new systems entered the 
top tier

• No. 1 supercomputer: DOE's IBM BlueGene/L system
– Installed at Lawrence Livermore National Laboratory (LLNL
– Achieves a record Linpack performance of 280.6 TFlop/s
– It is still the only system ever to exceed the 100 TFlop/s mark
– 131,072 processors
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TOP500 architectures and Applications
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TOP500 Processors
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Top500 OS and Interconnects 
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Popular Flynn Categories 

• SISD (Single Instruction Single Data)
– Uniprocessors

• MISD (Multiple Instruction Single Data)
– ???; multiple processors on a single data stream

• SIMD (Single Instruction Multiple Data)
– Examples: Illiac-IV, CM-2

• Simple programming model
• Low overhead
• Flexibility
• All custom integrated circuits

– (Phrase reused by Intel marketing for media instructions ~ vector)

• MIMD (Multiple Instruction Multiple Data)
– Examples: Sun Enterprise 5000, Cray T3D,  SGI Origin

• Flexible
• Use off-the-shelf micros
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Two Major MIMD Styles

1. Centralized shared memory 
• UMA: Uniform Memory Access
• Symmetric (shared memory) multiprocessors (SMPs)

Processor

Caches

Processor

Caches

Processor

Caches

Processor

Caches

Main Memory I/O System
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Two Major MIMD Styles

2. Decentralized memory (memory module with CPU) 
• Get more memory bandwidth, lower memory latency
• Drawback: Longer communication latency
• Drawback: Software model more complex
• Two major communication models

Processor
& Caches

Memory I/O

Processor
& Caches

Memory I/O

Processor
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Memory I/O

Processor
& Caches

Memory I/O

Interconnection network
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Communication Models for
Decentralized Memory versions
1. Shared Address Space: 

• Called distributed Shared-memory (DSM)
• Shared shared address space

• Shared Memory with "Non Uniform Memory Access" time (NUMA)
2. Multiple Private Address Spaces:

• Message passing "multicomputer" with separate address space per 
processor

• Can invoke software with Remote Procedue Call (RPC)
• Often via library, such as MPI: Message Passing Interface
• Also called "Synchronous communication" since communication causes 

synchronization between 2 processes
• Asynchronous communication for higher performance
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Communication Performance Metrics: 
Latency and Bandwidth

1. Bandwidth
– Need high bandwidth in communication
– Match limits in network, memory, and processor
– Node bandwidth  vs. bisection bandwidth of network

2. Latency
– Affects performance, since processor may have to wait
– Affects ease of programming, since requires more thought to overlap 

communication and computation
– Overhead to communicate is a problem in many machines

3. Latency Hiding
– How can a mechanism help hide latency?
– Increases programming system burden
– Examples: overlap message send with computation, prefetch data, switch to 

other tasks
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Parallel Framework

• Layers:
– Programming Model:

• Multiprogramming : lots of jobs, no communication
• Shared address space: communicate via memory
• Message passing: send and receive messages
• Data Parallel: several agents operate on several data sets simultaneously 

and then exchange information globally and simultaneously (shared or 
message passing)

– Communication Abstraction:
• Shared address space: e.g., load, store, atomic swap
• Message passing: e.g., send, receive library calls
• Debate over this topic (ease of programming, scaling) 

=> many hardware designs 1:1 programming model
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(1) Shared Address Space Architectures

• Programming model
– process: virtual address space plus one or more threads of control
– portions of address spaces of processes are shared
– writes to shared address visible to all threads (in other processes as well)
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Shared Address Space Architectures (cont’d)

• Motivation: Programming convenience
– location transparency

• communication is implicitly initiated by loads and stores
– similar programming model to time-sharing on uniprocessors

• Communication hardware also natural extension of uniprocessor
– addition of processors similar to memory modules, I/O controllers

I/O ctrlMem Mem Mem

Interconnect

Mem I/O ctrl

Processor Processor

Interconnect

I/O
devices
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Evolution: Four Organizations

• Mainframes
– motivated by multiprogramming
– extends crossbar for memory modules and I/O

• initially, limited by processor cost
• later, by cost of crossbar

– high incremental cost
– e.g., IBM S/390 (now zServer)

• Minicomputers (SMPs)
– motivated by multiprogramming,

transaction processing
– all components on a shared bus

• latency larger than for uniprocessor
• bus is bandwidth bottleneck
• caching is key: coherence problem

– low incremental cost
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– All coherence and multiprocessing 
glue in processor module

– Highly integrated, targeted at high 
volume

– Low latency and bandwidth

P-Pro bus (64-bit data, 36-bit address, 66 MHz)
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Example of an SMP: Intel Pentium Pro Quad
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• Dance Hall
– problem: interconnect cost (crossbar),

or bandwidth (bus)
– solution: scalable interconnection network

• bandwidth scalable
• however, larger access latencies
• caching is key: coherence problem

– e.g., NYU Ultracomputer

• Distributed Memory (NUMA)
– message transactions across a 

general-purpose network
• e.g. read-request, read-response

– caching of non-local data is key
• coherence costs

– e.g., Cray T3E (now X1), Origin 2000, Altix 3000

Evolution: Four Organizations (contd.)
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Example of a NUMA: Cray T3E

• Scales up to 1024 processors, 480MB/s links
• Non-local references accessed using communication requests

– generated automatically by the memory controller 
– no hardware coherence mechanism (unlike SGI Origin or SGI Altix)
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(2) Message Passing Architectures 

• Programming model
– directly access only private address space (local memory), 

communicate via explicit messages (send/receive)
– in simplest form, achieves pair-wise synchronization

– model is decoupled from basic hardware operations
• library or OS intervention for copying, buffer management, protection

ProcessP ProcessQ

AddressY

Address X

Send X, Q

Receive Y, PMatch

Local process
address spaceLocal process

address space
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Message Passing Architectures (cont’d)

• Complete computer as building block, including I/O
– communication via explicit I/O operations

• High-level block diagram similar to distributed-memory shared 
address space machines

– but communication integrated at IO level, needn’t be into memory system
– like networks of workstations (clusters), but tighter integration
– easier to build than scalable shared address space machines
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Example of a Message Passing Machine: IBM SP

• Made out of essentially complete RS6000 workstations
• Network interface integrated in I/O bus (bandwidth limited by I/O bus)
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Evolution of Message-Passing Machines

• Early machines: FIFO on each link
– HW close to programming model

• synchronous operations
– replaced by DMA

• enables non-blocking operations
• buffered by system at destination

• Today: diminishing role of topology
– topology important for store-and-forward routing
– introduction of pipelined (cut-through) routing made it less so

• Virtual cut through, wormhole routing
– cost is in node-network interface
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Message Passing Model
• Whole computers (CPU, memory, I/O devices) communicate as 

explicit I/O operations
– Essentially NUMA but integrated at I/O devices vs. memory system

• Send specifies local buffer + receiving process on remote 
computer

• Receive specifies sending process on remote computer + local 
buffer to place data

– Usually send includes process tag 
and receive has rule on tag: match 1, match any
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Advantages shared-memory communication 
model

• Compatibility with SMP hardware
• Ease of programming when communication patterns are complex or vary 

dynamically during execution
• Ability to develop apps using familiar SMP model, attention only on 

performance critical accesses
• Lower communication overhead, better use of BW for small items, due to 

implicit communication and memory mapping to implement protection in 
hardware, rather than through I/O system 

• HW-controlled caching to reduce remote comm. by caching of all data, both 
shared and private. 
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Advantages message-passing communication 
model

• The hardware can be simpler  (esp. vs. NUMA)
• Communication explicit => simpler to understand; in shared memory it can 

be hard to know when communicating and when not, and how costly it is
• Explicit communication focuses attention on costly aspect of parallel 

computation, sometimes leading to improved structure in multiprocessor 
program

• Synchronization is naturally associated with sending messages
• Easier to use sender-initiated communication, which may have some 

advantages in performance

• Can support either SW model on either HW base
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Amdahl’s Law and Parallel Computers

• Amdahl’s Law (FracX: original % to be speed up)
Speedup = 1 / [(FracX/SpeedupX + (1-FracX)]

• A portion is sequential => limits parallel speedup
– Speedup <= 1/ (1-FracX)

• Ex. What fraction sequential to get 80X speedup from 100 processors? 

80 = 1 / [(FracX/100 + (1-FracX)]
0.8*FracX + 80*(1-FracX) = 80 - 79.2*FracX = 1
FracX = (80-1)/79.2 = 0.9975

Only 0.25% sequential allowed!
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Shared Memory Multiprocessors

• Symmetric multiprocessors (SMPs)
– uniform access to all of main memory from any processor

• Dominates the server market
– building blocks for larger systems
– arriving to desktop

• Attractive for both parallel programs and throughput servers
– fine-grain resource sharing
– automatic data movement and coherent replication in caches

Uniform access via loads and stores
– private caches reduce access latency, bandwidth demands on bus
– however, introduce the cache coherency problem

• values in different caches need to be kept consistent
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Memory

P1

$ $ $

P2 P3

5

u = ?

4

u = ?

1

u:5

u:5 2

u:5

3

u = 7

The Cache Coherence Problem

• Processors see stale values
– with write-back caches, value written back to memory depends on which 

cache flushes or writes back value (and when)
– clearly not a desirable situation!
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So What Should Happen?

• Intuition for a coherent memory system
 reading a location should return latest value written (by any process)

• What does latest mean?
– several alternatives (even on uniprocessors)

• source program order, program issue order, order of completion, etc.
– how to make sense of order among multiple processes?

must define a meaningful semantics 

• Is cache coherence a problem on uniprocessors?
• Yes!

– interaction between caches and I/O devices
• infrequent software solutions work well

– uncacheable memory, flush pages, route I/O through caches 

– however, the problem is performance-critical in multiprocessors
• needs to be treated as a basic hardware design issue
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Order Among Multiple Processes: Intuition

• Assume a single shared memory, no caches
– every read/write to a location accesses the same physical location

• operation completes when it does so
– so, memory imposes a serial or total order on operations to the location

• operations to the location from a given processor are in program order
• the order of operations to the location from different processors is some 

interleaving that preserves the individual program orders

• With caches 
 “latest” ≡ most recent in a serial order that maintains these properties
– for the serial order to be consistent, all processors must see writes to the 

location in the same order (if they bother to look)
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Formal Definition of Coherence

 A memory system is coherent if the results of any execution of a
program are such that for each location, it is possible to construct a 
hypothetical serial order of all operations to the location that is 
consistent with the results of the execution and in which:
– operations issued by any particular process occur in the order issued by 

that process, and
– the value returned by a read is the value written by the last write to that 

location in the serial order

• Two necessary features:
– write propagation: value written must become visible to others 
– write serialization: writes to a location seen in the same order by all
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Cache Coherence Using a Bus

Two fundamentals of uniprocessor systems
• Bus transactions

– three phases: arbitration, command/address, data transfer
– all devices observe addresses, one is responsible for providing data

• Cache state transitions
– every block is a finite state machine
– two states in write-through, write no-allocate caches: valid, invalid
– write-back caches have one more state: modified (“dirty”)

• Multiprocessors extend both these somewhat to implement coherence
– “snoop” on bus events and take action
– cache controller receives inputs from two sides: processor and bus

• actions: update state, respond with data, generate new bus transactions
– protocol implemented by cooperating state machines

Will discuss another Coherence scheme later: Directory-Based Schemes
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Coherence with Write-through Caches

• Snoop on write transactions and invalidate/update cache
– memory is always up-to-date (write-through)
– invalidation causes next read to miss and fetch new value from memory 

(write propagation)
– bus transactions impose serial order writes are seen in the same order 

(write serialization)
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Basic Snooping Protocols

• Write Invalidate Protocol:
– Multiple readers, single writer
– Write to shared data:  an invalidate is sent to all caches which snoop and 

invalidate any copies
– Read Miss: 

• Write-through: memory is always up-to-date
• Write-back: snoop in caches to find most recent copy

• Write Broadcast Protocol (typically write through):
– Write to shared data: broadcast on bus, processors snoop, and update any copies
– Read miss: memory is always up-to-date

• Write serialization: bus serializes requests!
– Bus is single point of arbitration
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Basic Snooping Protocols Comparison  

• Write Invalidate versus Broadcast:
– Invalidate requires one transaction for multiple writes to the same word
– Invalidate uses spatial locality: one transaction for writes to different words in 

the same block
– Broadcast has lower latency between write and read

• Bus and memory bandwidth most in demand
– Invalidation is the protocol of choice
– For same reasons, write back caches are chosen over write-through caches
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CPU-Snoop Contention

• CPU accesses and bus transactions check cache “tags”
• Potential interference as one can stall the other
• Reduce the interference by

– Duplicating cache tags
• CPU will be using a different set of tags
• CPU may get stalled during cache access when snoop has detected a copy in 

the cache and tags need to be updated
– Using multi-level caches with inclusion 

• Content of primary cache (L1) is in secondary cache (L2)
• Most CPU activity directed to L1
• Snoop activity directed to L2
• If snoop gets a hit then it arbitrates L1 to update and possibly get data; this 

will stall CPU
• Can be combined with “duplicate tags” approach to further reduce contention 
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An Example Snooping Protocol

• Invalidation protocol, write-back cache
• Each block of memory is in one state:

– Clean in all caches and up-to-date in memory (Shared)
– OR Dirty in exactly one cache (Exclusive)
– OR Not in any caches

• Each cache block is in one state (track these):
– Shared : block can be read
– OR Exclusive : cache has only copy, its writeable, and dirty
– OR Invalid : block contains no data

• Read misses: cause all caches to snoop bus
• Writes to clean line are treated as misses
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Snooping-Cache State Machine: for CPU requests

State machine for CPU
requests for each  cache block

Invalid
Shared

(read only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place read miss
on bus

Place Write 
Miss on bus

CPU read miss
Write back block,
Place read miss
on bus

CPU Write
Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit



4/3/2006 43

Snooping-Cache State Machine: for bus requests

State machine for bus requests 
for each cache block

Invalid Shared
(read only)

Exclusive
(read/write)

Write Back Block
(abort memory access)

Write miss
for this block

Read miss 
for this block

Write miss 
for this block

Write Back Block; (abort
memory access)
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Snooping-Cache State Machine: combined

State machine
for CPU requests
for each cache block and
for bus requests
for each 
cache block

Write Back
Block; (abort

memory access)

Place read miss
on bus

Invalid
Shared

(read only)

Exclusive
(read/write)

CPU Read

CPU Write

CPU Read hit

Place Write Miss on bus

CPU read miss
Write back block,
Place read miss
on bus CPU Write

Place Write Miss on Bus

CPU Read miss
Place read miss 
on bus

CPU Write Miss
Write back cache block
Place write miss on bus

CPU read hit
CPU write hit

Write miss 
for this block

Write miss 
for this block

Read miss 
for this block

Write Back
Block; (abort
memory access)
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Example

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1
P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

Processor 1 Processor 2 Bus Memory

Remote
Write

Write Back

Remote Write 

Invalid Shared

Exclusive

CPU Read hit

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss
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Example: Step 1
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2.
Active arrow  = Remote

Write
Write Back

Remote Write 

Invalid Shared

Exclusive

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

CPU Read hit
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P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 20 to A1
P2: Write 40 to A2

Example: Step 2

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

Remote
Write

Write Back

Remote Write 

Invalid Shared

Exclusive

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

CPU Write Miss
Write Back

CPU Read Miss

CPU Read hit
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Example: Step 3
P1 P2 Bus Memory

step State Addr Value State Addr Value Action Proc. Addr Value Addr Value
P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1

P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2.

Remote
Write

Write Back

Remote Write 

Invalid Shared

Exclusive

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

A1
A1

CPU Write Miss
Write Back

CPU Read Miss

CPU Read hit
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Example: Step 4

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 10

10

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

Remote
Write

Write Back

Remote Write 

Invalid Shared

Exclusive

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

A1
A1
A1

CPU Write Miss
Write Back

CPU Read Miss

CPU Read hit
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Remote
Write

Write Back

Remote Write 

Invalid Shared

Exclusive

Read
miss on bus

Write
miss on bus CPU Write

Place Write 
Miss on Bus

CPU read hit
CPU write hit

Remote Read
Write Back

Example: Step 5

P1 P2 Bus Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr Value

P1: Write 10 to A1 Excl. A1 10 WrMs P1 A1
P1: Read A1 Excl. A1 10
P2: Read A1 Shar. A1 RdMs P2 A1

Shar. A1 10 WrBk P1 A1 10 10
Shar. A1 10 RdDa P2 A1 10 10

P2: Write 20 to A1 Inv. Excl. A1 20 WrMs P2 A1 10
P2: Write 40 to A2 WrMs P2 A2 10

Excl. A2 40 WrBk P2 A1 20 20

A1

A1

Assumes initial cache state 
is invalid and A1 and A2 map 
to same cache block,
but A1 !=  A2

A1
A1
A1

CPU Write Miss
Write Back

CPU Read Miss

CPU Read hit
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Snooping Cache Variations: MESI Protocol

• Four sates:
– Modified/Exclusive/Shared/Invalid 

• Exclusive now means exclusively cached but clean
– Upon loading, a line is marked E, subsequent read OK

• Modifies for exclusive writes:
– Writes mark M 

• If another node's read is seen, mark S 
• Write to an S, send I to all, mark M 
• If another reads an M line, write it back, mark it S 
• Read/write to an I misses 
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Snooping Cache Variations: Berkeley Protocol 

• The main idea is to allow cache to cache transfers on the shared bus 
• It adds the notion of “owner” 

– the cache that has the block in a Dirty state is the owner of that block:
The last one who writes, is the owner

• The owner responsible to transfer data if read occurs and to update 
main memory
– If a block is not owned by any cache, memory is the owner


