Solution Paper —llI
High Performance Computer Architecture

Q. 1. What are benchmarks? Discuss various kinds Bench marks. Give their significance in computer
architecture.

Ans. Bench mark: The selection of a computer system to meet an end user requirement needs a formal
procedure as specified ahead: The feasibility study of a new installation or the possibility of n/ o grading
an existing system is analyzed to determine cost effectiveness in terms of requirements of end-user. The
report based on increased productivity of skilled staff, reduced product development times, a more
reliable product etc. is prepared. Then report of the feasibility study to be submitted to senior
measurement to segment funds to implement the proposed system.

Bench mark programs used to test particular performance factors like whetstone for floating point
numerical, ohrystona for integer numerical and string. End user bench mark programs to evaluate
performance factors that are important in particular application area like unpack benchmark.

There are following kinds of benchmarks
(i) Whetstone benchmark

(ii) Dhrystone benchmark

(iii) LINPAC Benchmark

(iv) SPEC Benchmark.

(i) Whetstone benchmark: Whetstone benchmarks are a synthetic benchmark used to test compiler
optimication and bating point performance. The whetstone benchmark is used to measure computer
performance and is designed to stimulate floating point numerical applications.

(a) This benchmark is having a large percentage of floating point data and instruction.

(b) This benchmark spends a high percentage it execution time nearly 50% in mathematical library
functions.

(c) Whetstone benchmarks contains a number of very tight loops and use of instruction Caches will
enhance performance effectively.

(ii) Dhrystone benchmark: The Dhrystone benchmark is used to test performance factors important in
non-numeric system programming like operating systems, compilers, word processor etc.

(a) This benchmark do not contain floating-point operations.

(b) This benchmark spent a considerable percentage of time in string functions making the test very
dependent upon the way such operations are performed. Example in line lode, routines written in
assembly language making it brone to manufacturers fine-tuning of critics routines.

(iii) LINPAC benchmark: The unpack benchmark is derived from a real application that originated as a
collection of linear algebra subroutines implemented in FORTRAN.

(iv) SPEC benchmark: The Standard Performance Evaluation Corporation (SPEC)is non-profit
corporation formed to establish, maintain and endorse a standardized set of relevant bench marks that
can be applied to the newest generation of High-performance Computers.

Q 2.What is instruction cycles? Explain.

Ans. A program in computer consists of sequence of instructions. Executing these instructions runs the
program in computer. Moreover each instruction is further divided into sequences of phases The
concept of execution of an instruction through different phases is called instruction cycle. The
instruction is divided into sub phases as specified ahead.

1. First of all an instruction is fetched (accessed) from memory.

2. Then decode that instruction.,

3. Decisions is made for memory or register of 1/O reference instruction, in case of memory indirect
address, read the effective address from the memory.

4. Finally execute the instruction.

1. Fetch phase : The sequence counter (SC) is initialized to 0. The program counter (PC) contains the
address first instruction of a program under execution. The address of first instruction on front PC is
loaded into address register (AR) during first clock esTQ). Then instruction from memory location given
by address (AR) is loaded into the instruction.register (IR) and program. coi is increased to address of
next instruction in second clock (T1). i. nese micro-operations using register transfer language is shown
as ahead.

Ty: AR « PC.

TR « M[Alﬁ}y PC « PC +1.

2. Decode phase: All bits of the instruction under execution stored in JR are analysed and decoded as
shown ahead in third clock cycle (T2).

T2: DO, D1, D2 ... D1 -i5ecode IR (12 - 14)
I-JR(15), AR-JRY’

3. Decision phase : First off all the [JR (12 — 14)] bit of instruction are decoded.
(i) If decoder output D7 (111) is 1, that means instruction must be register reference or inp
peference....Then the last bit of instruction registerjj) stored itj. flip-flop | is decoded If JR (15) = O that
means thc instruction is register enclnfrtion.JfIR (15) 1, that theans the Instruction are used far
registers or 1/0O reference instruction code.

T,: D, < Decode IR (12 - 14), O « IR (15) (Register reference)

T, : D, « Decode IR (12 - 14)

I «< IR (15). (I/ O reference). .

(i) If decoder output D7 (lll) is not %, that means JR (12—14) are decoded in between DO to D6. That
implies the instruction is memory reference instruction. Then last bit of instruction register JR (15)
stored in flip-flop J is decoded. Jt JR (15) = 0, that mean memory reference instruction is direction
address instruction If JR (15) = 1, that means memory reference instruction is indirect address
instruction. The first twelve bits of instruction are used as address of memory location.

T, ;: Dy, Dy D, DO « Decode IR (12 - 14)
(Direct address memory regference instruciton)
T, : Dy, Dy, D, ... Dg < Decode IR (15)

(Indirect Address Memory Reference Instruction).

4. Execution Phase : Then the instruction is executed as memory or register or input output reference
instruction in fourth clock cycle (T3).

D, I' T; :Execute direct address memory reference instruction.

D,' I' T : Calculate the effective addresss (AR < M[AR]) and execute indirect address

memory reference instruction.
D;' I' T, :Execute register reference instruction.

- D,' I T5: Execute an input output reference instruction.

Flow chart of instruction cycle

Start
SCe&—0

> To —_
h

Qn«e—épc
[. e > ,I,

T1 . Fetch
L phase

IR €<—— M[AR],

T2 —

L

Decode operation code from
IR (12-14), AR €<— IR (0-11), Decode
|€<— IR (15) phase

(Register or 1/O)

-) Decision
= 0 (Memory reference) :| phase

| = 1 (Direct
addressing)

Indirect

{10y i=1 1= 0 (Register) (address) | = 1)

Py P, Ps
A y
Execute
Execute VO by
Instruction rejister AR <— M[AR] Nothing
reference inst.
sc<—o SC<— 0
Execute
memory
reference
SC<«— O
s s 5 Execute
phase

Q. 3. Write a note on following:
(i) Pentium Processor - (ii) Server System

Ans. (i) Pentium processor: Pentium processor with super scalar architecture came as modification of
80486 and 8086. It is based on CISC and uses two pipelines for integer processor so that two instructions
are processed simultaneously one pipeline will have same condition then another is compared with
hardware 80486 processor had only adder in one chip floating point unit. One the other side Pentium
processor is having adder, multiplier and divide in on chip floating point unit. That means Pentium
processor can do the multiplication and division fastly. The separate data and code cache of 8KB exits on
chip. Dual independent bus (DIB) architecture divides the bus as front side and backside bus. Backside

Bus transfer the data from L2 Cache to CPU and vice-versa. Front side bus is used to transfer the data
from CPU to main memory and to other components of system.

Pentium processor user write back policy for cache data, while 80486 uses write through policy for
cache data. The detail other common types of processor are AMD and Cyrix although these two types of
processor are less powerful as compared to Pentium Processor.

(ii) Server System : System is formed as server or client depending upon the software used in that
machine suppose window 2003 server operating system is installed on machine, that machine will be
termed as sever. If on the same machine Window 95 is installer that machine is termed as client.
Although server machine uses specialized hardware meant for faster processing server provides the
service to other machine called client attached to server. Different types of servers are Network server,
web server, database server, backup server. Sever system is having powerful computing power,
high performance and higher clock speed. These systems are having good fault tolerance capability
using disk mirroring, disk stripping and RAID concepts. These systems have back up power supply with
hot swap. IBM and SUN servers are providing the different server of server for different use.

Q. 4. Compare and contrast super pipelined machine and super scalar machines.

Ans. Super pipelined machine: Pipelining is the concept overlapping of multiple instruction during
execution time. Super of pipelining splits one task into multiple subtasks. These subtasks of two or more
different tasks are executed parallel by different hardware units. It overlaps the multiple instructions in
execution. The instruction goes through the four stages during execution phase.

1. Fetch an instruction from memory (Fl).
2. Decode the instruction (DI).

3. Calculate the effective address (EA).

4. Execute the instruction (LI).

FI|DI{TEA | EI
F1| DI[EA | EI
FI| DI|EA | EI
FI| DI|EA | EI
"FI| DI |EA|EI

o= B N =

Fig. Space time diagram

Super scalar processor/Machine: The scalar machine executes one instruction one set of operands at a
time. The super scalar architecture allows on the execution of multiple instruction, at the same time in
different pipeline. Here multiple processing elements are used for different instruction at the same
time. Pipeline is also implemented in each processing elements. The instruction fetching units fetch
multiple instructions at a time from cache. The instruction decoding units check the independence of
those instructions at a time from cache. There should be multiple execution units so that multiple
instructions can be executed at the same time. The slowest stage among fetch, decode and execute will
determine the overall performance of system. Ideally these three stages should be equal fast.

Q. 5. What are reasons of pipeline conflicts in pipelined processor? How are they resolved?

Ans. There are following reasons which create the conflicts in pipelined processor and way by which it is
resolved:

1. Resource conflicts: It caused by access to memory by two segments at the same time. Most of these
conflicts can be resolved by using separate instruction and data memories.

2. Data dependency conflict: It arises when an instruction depends on the result of a previous
instruction, but this result is not yet available.

3. Branch difficulties: It arises from branch and other instructions that change the value of PC.

A difficulty that may cause a degradation of performance in an instruction in pipeline is due to possible
collision of data or address. A collision occurs when an instruction cannot proceed because previous
instructions did not complete certain operations. A data depending occurs when an instruction needs
data that are not yet available. For example, an instruction in the Fetch operand segment may need to
fetch an operand that is being generated at the same time by the previous instruction in segment EX
(Execute). Therefore, the second instruction must wait for data to become available by the first
instruction. Similarly, an address dependency needed by address mode is not available.

For example, an instruction with register indirect mode cannot proceed to fetch the operand if the
previous instruction is loading the address into the register. Therefore, the operand access to memory
must be delayed until the required address is available. Pipelined computers deal with such conflicts
between data dependencies in a variety of ways. The most straight forward method is to insert
Hardware inter locks. An interlock is a circuit that detects instructions whose source operands are
destinations of instructions farther up in pipeline. This approach maintains the program sequences by
using hardware to insert the required delays.

Another technique called operand forwarding uses special hardware to detect a conflict and then avoid
it by routing the data through special paths between pipeline segments.’tor example, instead of
transforming an ALU result into a destination register, hardware checks the destination operand and if it
is needed as a source in the next instruction, it passes the result directly into ALU input, by passing the
register file. This method requires additional hardware paths through multiplexers as well as the circuit
that detects the conflict.

A procedure employed in some computers is to give the responsibility for solving data conflicts
problems to the compiler that translates the high-level programming language into a machine language
program.

Q 6.What is meant by super scalar processor? Explain the concept of pipeliningin uperscalar
processor?

Ans. The scalar processor executes one instruction on one set of operands at a time. The super scalar
architecture allows the execution of multiple instructions at the same time in different pipelines. Here
multiple processing elements are used for differentinstruction at same time. Pipeline is also

implemented in each processing elements. The instruction fetching units fetch microinstruction at a
time from cache. The instruction decoding unit checks the independence of these instructions so that
they can be executed in parallel. There should be multiple execution units so the multiple instructions
.can be executed at the same time. The slowest stage among fetch, decode and execute will determine
the performance of the system. Ideally these three stages should be equally fast. Practically execution
stage in slowest and drastically affect the performance of system.

Pipeline overlaps the multiple instructions in execution. The instruction goes through the four stages
during the execution phase.

1. Fetch an instruction from memory (Fl)
2. Decode the instruction (Dl)
3. Calculate the effective address (EA)

4. Execute the Instruction (El).

1] 2 3| 4| 5[6] 7] 8
1|FI|DI|EA| EI

2 FI| DIEA| EI

3 FI| DI|EA | EI

4 FI| DI|EA| EI

5 FI | DI |EA | EI

In space-time diagram above, five instructions are executed using instruction pipeline.

These five instructions are executed in eight clock cycles. Each instruction had been through four stages.
Although the various stages may not be of equal duration in each instruction. The result in waiting at
certain stages.

Q. 7. In a two-level memory hierarchy, if the cache has an access time of ns and main memory has an
access time of 60ns, what is the hit rate in cache required to give an average access time of 10ns?

Ans. Using the formula, the average access time = (THjt X 1Hit) + (T5x ‘miss)

The average access time 10ns = (8ns x hit rate) + 60 ns x — (hit rate), (The hit and miss rates at a given
level should sum to 100 percent). Solving for hit rate, we get required hit rate of 96.2%.

Q. 8. Explain instruction set of SPARC with Descriptions.

Ans. The condition code register on the SPARC has four bits: Z (Zero), N (Negative), C (Carry), and V
(Overflow). The standard arithmetic operations (e.g., addition and subtraction) do not update the bits in
the condition code register. Instead, there are special operations that update the condition code
register. The names for these operations have a suffix of ““cc" to indicate that they update the bits in the
condition code register.

In most cases, the effect that an operation has on the condition codes is just what you would expect.
Most of these operations set the Z bit when the result of the operation is zero, and clear this bit when
the result is nonzero. Similarly, most of these operations set the N bit when the result of the operation is
negative, and clear this bit when the result is nonnegative. The V bit is usually set when the (signed
integer) result of the operation cannot be stored in 32 bits, and cleared when the result can be stored in
32 bits. Finally, the C bit is set when the operation generates a carry out of the most significant bit, and
cleared otherwise.

In most contexts, you will be most interested in the N and Z bits of the condition code register and we
will emphasize these bits in the remainder of this lab.

INSTRUCTIONS

A) Data Movement Instructions

Instruction Description Example

Idsb address, rd

Load signed byte from addr

Idsb [%r1], %r2

Id address, rd

Load signed word from addr

Id [%r1], %r2

Idub address,
rd

Load unsigned byte from addr

Idub [%r1],
%r2

stb rs, address

Stores byte to addr

stb %r1, [%r2]

sth rs, address

Stores halfword to addr

sth %r1, [%r2]

strs, address

Stores word to addr

st %rl, [%r2]

sethi const22,

Sets upper 22 bits of rd with

sethi 123,%r1

rd const
B) Arithmetic Instructions
Instruction Description Example
add/addcc rsi, rs2/const, reg[rd] = reg[rs1] + reg[rs2] add %r1, %r2, %r3
rd

sub/subcc rsi, rs2/const, rd

reg[rd] = reg[rs1] - reg[rs2]

sub %r1, %r2, %r3

addx/addxcc rsi, rs2/const,

reg[rd] = reg[rs1] + reg[rs2] (with

addx %r1, %r2,

rd carry) %r3
subx/subxcc rsi, rs2/const, reg[rd] = reg[rs1] - reg[rs2] (with subx %r1, %r2,
rd borrow) %r3
cmp %r1,%r2 Sets appropriate condition codes cmp %r1,%r2
C) Logical and Shift Instructions
Instruction Description Example
and reg[rd]=reg[rs1] AND and
rsi,rs2/const,rd reg[rs2] %r1,%r2,%r3
orrsl,rs2/const,rd | reg[rd]=reg[rs1] OR reg[rs2] | or %r1,%r2,%r3

orn reg[rd]=reg[rs1] NOR orn
rs1,rs2/const,rd reg[rs2] %r1,%r2,%r3
D) Branch and Control Transfer Instructions
Instruction Description Example
ba target branch always ba loopl
bne target branch not equal bne loop1l
be target branch equal be loopl
bg target branch greater bg loopl
ble target branch less than or equal ble loopl
bge target branch greater than or equal | bge loopl
bl target branch less than bl loop1
bgu target branch greater (unsigned) bgu loopl
bleu target branch less or equal (bleu loopl
unsigned)

Note: Like most RISC machines, the SPARC uses a branch delay slot. By default, the instruction
following a branch instruction is executed whenever the branch instruction is executed.

E) Procedure Instructions

Instruction Description Example
call target Jump to call-address and save PC into %r15 call proc
jmplrs, rd Jumps to [rs] and saves PC to rd jmpl %r1,%r2
save rsl,rs2,rd Provide new register window . rd = rs1 + rs2 (For stack pointer | save %sp,-16,%sp
updation)
save rs1,const,rd
restore rs1,rs2,rd Restore old register window. rd = rs1 + rs2 restore
%sp,16,%sp
restore (For stack pointer updation)
rs1,const,rd

Q. 9. What is the difference between isolated mapped Input Output and memory mapped Input
Output. What are the advantages and disadvantages of each?

Ans. Isolated I/O: In isolated mapped 1/0O transfer, there will be common address and data bus for main
memory and 1/O devices. The distinction memory transfer i |7transfer is made through control lines.
There will be separate control signals for main memory and I/O device. Those signals are memory read,
memory write, 1/O read and 1/O write. This is an isolated 1/O method of communication using a
common bus. When CPU fetches and decodes the operation code of input or output instruction, the
address associated with instruction is placed on address bus. If that address is meant for 1/0O devices
then 1/0 read or I/O write control signal will he enabled depending upon whether we want to read or
write the data from 1/O devices. If that address is meant for main memory then memory read or

memory write signals will be enabled depending upon whether we want to read or write the data to
main memory. Memory Mapped I/O: In memory-mapped I/O, certain address locations are not used by
memory and |I/O devices use these address. Example : It address from O to 14 are not used by main
memory. Then these addresses can be assigned as the address of I/O devices. That means with above
example we can connect with 15 I/O devices to system having addresses from 0 to 14. So we an have
single set of address, data and control buses. It the address on address bus belongs to main memory.
This will reduce the available address space for main memory but as most modern system are
having large main memory so that is not normally problem. Memory mapped 1/O treats 1/O parts as
memory locations programmer must ensure that a memory-mapped address used by /O device is used
as a regular memory address. There are following main point of difference between isolated mapped I/0
and memory mapped I/0.

Isolated Mapped I/O Memory Mapped I/O

1. Isolated 1I/O method is for assinging| The assigned addresses for interface
addresses Ina common bus. cannot be used for memory words, which
7 reduces the memory range available.

2. In isolated I/O configuration, the CPU | Memory-mapped I/O use memory type
has distinct input and output| instructions to access I/O data.
instruction and each associated with -
address of interface resister.

3. The address locations are used by I/O | Some address locations are used by
devices than it is for I/O read or I/O | memory and I/O device can use these
write control signal will enable. addresss.

4. In this, there is separate control signal | There is common control signal through

for main memory and 1/O devices. memory mapped 1/O for memory and
1/O devices. e

Advantage/disadvantage

The Advantage is that the load and store instructions used for reading and writing from memory can be
used to input and output data from I/O registers. In a typical computer, there are more memory
reference instructions than 1/O instructions with memory-mapped 1/O all instruction that refer to
memory are also available for 1/0.

Q. 10. Write and explain all classes of interrupts.

Ans. There are two main classes of interrupts explained below:
1. Maskable interrupts.
2. Non-maskable interrupts.

1. Maskable interrupts: The commonly used interrupts by number are called maskable interrupts The
processor can ask o temporarily ignore such interrupts These interrupts are temporarily 1gnred such
that processor can finish the task under execution. The processor inhibits (block) these types of
interrupts by use of special interrupt mask bit. This mask bit is part of the condition code register or a

special interrupt request input, it is ignored else processor services the interrupts when processor is
free, processor will serve these types of interrupts.

2. Non-Maskable Interrupts (NMI): Some interrupts cannot be masked out or ignored by the processor.
These are referred to as non-maskable interrupts. These are associated with high priority tasks that
cannot be ignored. Example system bus faults.

The computer has a non-maskable interrupts (NMI) that can be used for serious conditions that demand
the processor’s attentions immediately. The NMI cannot be ignored by the system unless it is shut off
specifically. In general most processors support the non-maskable interrupt (NMI). This interrupt has
absolute priority. When it occurs the processor will finish the current memory cycle and then branch to
a special routine written to handle the interrupt request. When a NMI signal is received the processor
immediately stops whenever it as doing and attends to it. That can lead to problem if these type of
interrupts are used improperly. The NMI signal is used only for critical problem situation like Hardware
errors.

