Solution Paper-I

High Performance Computer Architecture

Question 1:- How to debug a branch predictor?

Answer:-
You can debug by having a very short GHR (3 bits or 4 bits) something like that and print out all the PHT
entries (8 or 16 entries) and then check how 2 bit counters and GHR are all updated.

Question 2:- Where do we put the following message?

if (KNOB_DEBUG_PRINT.Value()) {
cout << "ID_STAGE OP " << op->inst_id << " is scheduled at cycle " << cycle_count << endI; }
When we insert ops into the scheduler or when instructions are removed from the scheduler?

Answer:-

When instructions are removed from the scheduler. Description says that " Add the following code
where an op is scheduled. (an instruction will be executed at the following cycle) (An in order processor
should print out these messages in order.) "

Question 3:- What is the maximum value of KNOB_GHR_LENGTH?

Answer:-

Since 27 (KNOB_GHR_LENGTH)*2 bit will be the size of g-share branch predictor, any branch predictor
which would have more than 1MB is very unpractical due to power and space overhead. Hence, you can
assume that the maximum GHR_LENGTH is 32 bits.

Question 4:- What are characteristics of Unpack benchmarks?

Answer:-
The Linpack benchmark is derived from a real application that originated as a collection of linear

is subroutines, There is following characteristics of LINPAC benach mark given below
1. This benchmark has a large percentage of floating point operations. Although it do not use division. - .

2. This benchmark does not use any mathematical functions although whetstone benchmark uses
mathematical function.

3. It does not have global variables. The operations are being carried out on local variables or an array
passed to subroutines as a parameter.

4. This benchmark operates on a two dimensional army. The care must be takent hiring result
comprising that the array size is used.

5. The result for single or double precisiorr operations are both specified in user manual.

6. This benchmark spends a large percentage (over 70%) of execution time within a single function
where even a small instruction cache can enhance the performance considerably.

7. This benchmark is based on basic linear algebra subroutines (BLAS) that should be coded in FORTRAN
(as in original). Some Vendors present results where the subroutines have been rewriting in assembly
language that can make a considerable difference in the performance.

8. Versions of the Lin pack floating-point program are available in FORTRAN, assembly language and C
language.

Question 5:- When does the processor insert instructions inside the scheduler and when does it
remove instructions?

Answer:-

We remove instructions from the scheduler when an instruction is start to be executed. (i.e., the next
cycle all the sources are ready.) As soon as the instruction is removed, we assume that we can insert
instructions into the scheduler.

Question 6:- Can we fetch instructions after a branch if a branch is correctly predicted?

Answer:-

This is a very good question. To simplify the homework, we assume that the processor can fetch
instructions after a branch if a branch is correctly predicted. Of course, the processor should not fetch
more than KNOB_ISSUE_WIDTH number of instructions. If a branch is mispredicted, the processor
should not fetch instructions after the mispredicted branch. In a real hardware, the processor can fetch
instructions if a branch is not taken. Typically the processor brings a cache block so it can fetch
instructions from the same cache block. However, we do not model that behavior in the simulator. If a
processor has very aggressive |-cache or trace-cache mechanism, it can fetch instructions across
branches.

Question 7:- Do we limit the number of physical register?

Answer:-
We assume that the number of physical register is the double of the number of ROB entries. Hence,
there is no case that a processor cannot allocate a physical register.

Question 8:- We use a branch predictor for conditional branches. How about other control flow
instructions?

Answer:-

We assume that all other control flow instructions are correctly predicted with other predictor. We just
do not model other branch predictor. The simulator simply fetches next correct instructions for other
types of control flow instructions.

Question 9:- When does a store instruction actually write a value to the memory system? The MEM
stage or the WB stage?

Answer:-

Store instructions can change architectural states. So, a processor must send the store value into the
memory system when an instruction is ready to retire. Hence, we model such that a store instruction
writes a result in the WB stage. However, the store instruction should check data cache or miss in the
MEM stage. Hence, as a simulator's view point, both load and store instructions are equally handled in
the MEM stage. We do not add additional timing delay for store instruction in the commit stage.

Question 10:- When should the processor update the register file?

Answer:-
It should update the register file at the commit stage. Note that there are data forwarding logic in the
pipeline. We do not check the register valid bits to grade.

Question 11:- Which improvement gives a greater reduction in execution time : One that is used 20
percent of the time but improves performance by a factor of when used, or one what is used 70
percent of time but only improves performance by a factor of 1.3 when used.

Answer:-
Applying Amdahl’s Law, we get the following equation for the first improvement:

ion Tit Execution time;q) X —Frac b aCled)
Execution Time) = (old) * i (unused) Speed up (yeed)
“ D i 0.21
= Execution time ;) X| 0.8 +—

2t

Execution time,.,,) = Execution time (3, * 0.9

So the execution time with the first improvement is 90 percent of Execution time without the
improvement. Plugging the values for the second improvement into Amdahl’s law:

- o 07
Execuﬁon Time (New) = Executlon tlme(Old) x[0.3+"13']
Execution Time(new) = Execution time(old) x0.84 .
This shows that the execution time with the second improvement is 84 percent of the execution time

without the improvement. Thus, the second improvement will have agreater impact on overall
execution time despite the fact that it given less of an improvement when it is in use.

Question 12:- Briefly explain instruction format.

Answer:-

An instruction contain number of bits in the so that it is being to perform specific operation. Generally
an instruction is divided into three fields

Addressing mode: It specifies that how the operands are accessed in an instruction.

Operation code (0): This field specifies the operation that is performed in the operand.
Operand: It specifies the data on which operation is performed.
Question 13:- Differentiate between RISC and CISC.

Answer:-
Difference between RISC and CISC are given below:
1. It means Reduced Instruction set computing.

2. It uses hardwired control unit.

3. RISC requires fewer and limited instructions

4. Example of RISC processors are BM2PO,. SPARC from SO p-ticrosoft ycm, power PC and PA- RISC. —.
CISC:

It means complex instruction set computing.

It uses micro programmed control unit.

CISC requires wide range of instructions.

These instructions produce more efficient results. -

The example of CISC processor is IBM Z and gital equipment corporation VAX computer.

Question 14:- How pipelining would improve the performance of CPU justify.

Answer:-

Non-pipeline unit that performs the same operation and takes a time equal to (time taken to complete
each task). The total time required for n tasks is n t. The speed up of a pipeline processing over an
equivalent non-pipeline processing is defined by the ratio

nt,
S = (k+n-1t,

As the number of tasks increases, n becomes much larger than k — 1, and K + n — | approaches the
value of n, where K is segments of pipeline and Ip is time used to execute n tasks. Under this condition,
the speed up becomes.

ty
g =7
tP

The time it takes to process a task is the same in the pipeline and non pipeline circuits. There if t = kt
speed reduces to

Maximum speed that a pipeline can provide is K, where K is number of segments in pipeline. Speed of
pipeline process is improved the performance of C.P.U.To clarify the meaning of improving the
performance of C.P.U. through speed up ratio, consider the following numerical example. Let the time it
takes to process sub operationin each segment be equal to 20 ns. Assume that the pipeline k 4
segments and executes n 100 tasks in square. The pipeline system will take (k +n — 1) t=(4 +99) 20 =
2060 ns to complete. Assuming that t = kt = 4 x 20 = 80ns, a non-pipeline system requires nk tp = 100 x
80 8080 ns to complete tice 100 tasks. The speed up ratio is equal to 8000/2060 88. As the number of
tasks increase, the speed up will approach 4, which is equal to the number of segment in pipeline. It we
assume that = 60ns, then speed up become=60/3.

Question 15:- Differentiate between computer architecture and computer organization.

Answer:-
Difference between computer architecture and computer organization:

Coriputer Architecture Computer Organization

1. It includes emphasis on logical | It includes emphasis on the system
design, computer design and the | components, circuit design, logical design,
system design. structure of instructions, computer

arithmetic, processor control, assembly

language programming and methods of
performance enhancement. '

Computer organization is concerned with
the way the hardware components operate
and the way they are connected together
to form the computer system.

2. It is concerned with the structure
and behaviour of computer as seen
by user.

