Architectural Featuresin VLIW Processors

e VLIW processors rely on the compiler to identify a packet of
Instructions that can be issued in the same cycle

— Compiler takes responsibility for scheduling instructions so that their
dependences are satisfied

ri =L r4 r2z = Add r1, M f1 =Ml f1,f2 r5 = Add r5, 4

e Optimizations such as loop unrolling, and software pipelining expose
more ILP, allowing the compiler to build issue packets

» Architectural support helps compiler expose/exploit more ILP

3/4/2006

Basic Compiler Techniques (S1): Loop Unrolling

(Recap)

e Consider the example from last week:

for (i=1000;

| >0;

i--)

x[i] = x[i] + s

L1: L.D
ADD. D
S.D
DADDUI
BNE

3/4/2006

FO,
F4,
F4,
R1,
R1,

0(R1)
FO, F2
0(R1)

RL, #-8
R2, L1

Instruction Issue Cycle
L1 |L.D FO, O(R1) 1

st al | 2

ADD. D(F4, FO, F2 3

stal | /BCvdes 4

stal | / 5

S. D O(Rl) 6

DADDUI Rl1, #-8 |7

stal l 8

BNE R1, R2, L1 9

stall

=
o

Basic Compiler Techniques. Loop Unrolling (cont’ d)

« Loop unrolling optimization: Replicate loop body multiple times,

adjusting the loop termination code

L1: L.D
ADD. D
S.D
L.D
ADD. D
S.D
L. D
ADD. D
S.D
L.D
ADD. D
S.D
DADDUI
BNE

3/4/2006

FO,
F4,
F4,
Fo,
F8,
F8,
F10,
F12,
F12,
F14,
F16,
F16,
R1,
R1,

0(R1)

FO, F2

0(R1)

-8(R1)

F6, F2

- 8(R1)
- 16(R1)
F10, F2
- 16(R1)
- 24(R1)
F14, F2
- 24(R1)

RL, #-32

R2, L1

| nstruction |ssue

Cycle
L1 |L.D FO, O(R1) 1
L.D F6, -8(R1) 2
L.D F10, -16(R1) 3
L. D F14, -24(R1) 4
ADD. D F4, FO, F2 5
ADD. D F8, F6, F2 6
ADD. D F12, F10, F2 7
ADD. D F16, F14, F2 8
S.D F4, O(R1) 9
S.D F4, -8(Rl) 10
DADDU R1, R1, #-32 11
S.D F12, (R1) 12
BNE R1, R2, L1 13
S.D F16, 8(R1) 14

Basic Compiler Techniques. Loop Unrolling(cont’ d)

e Unroll loop 5 times

L1: L.D
ADD. D
S.D
L.D
ADD. D
S.D
L.D
ADD. D
S.D
L.D
ADD. D
S.D
L.D
ADD. D
S.D
DADDUI
BNE

FO, O(RL)

F4, FO, F2
F4, O(RL)

F6, -8(R1)
F8, F6, F2
F8, -8(Rl)
F10, -16(R1)
F12, F10, F2
F12, -16(R1)
F14, -24(R1)
F16, Fl14, F2
F16, -24(R1)
F18, -32(Rl)
F20, F18, F2
F20, -32(R1)
RL, Rl, #-40
RlL, R, L1

Provide instructions for VLIW

3/4/2006

Integer Instruction

FP Instruction

L1 L. D FO, O(RL) 1
L.D F6, -8(RL) 2
L.D F10, -16(Rl) |ADD.D F4, FO, F2 |3
L.D F14, -24(Rl) |ADD.D F8, F6, F2 |4
L.D F18, -32(Rl) |ADD.D F12, F10, F2|5
S.D F4, O(RL) ADD. D F16, F14, F2|6
S. D F4, -8(RL) ADD. D F20, F18, F2|7
S.D F12, -16(RL) 8
DADDU Rl, R1, #-40 9
S.D F16, 16(R1) 10
BNE RL, R2, L1 11
S. D F20, 8(RL) 12

Hardware Support for VLIW

o Toexpose more parallelism at compile time

— Conditional or predicated instructions
* Predication registersin |A64

— Allow the compiler to group instructions across branches

 Toalow compiler to speculate, while ensuring program correctness
— Result of speculated instruction will not be used in final computation if
mispredicted
— Speculative movement of instructions (before branches, reordering of
|oads/stores) must not cause exceptions
« HW allows exceptions from speculative instructions to be ignored
— Poison bits and Reorder Buffers
— HW tracks memory dependences between |oads and stores

o LDS (speculativeload) and LDV (load verify) instructions
— Check for intervening store

o Variant: LDV instruction can point to fix-up code

3/4/2006

HW Support for Speculative Operations (H1)

» Speculative operations in HPL-PD architecture from HP Labs written
identically to their non-speculative counterparts, but with an “E”
appended to the operation name.

— E.g.,, Dl VE, ADDE, PBRRE

Poison bits: If an exceptional condition occurs during a speculative
operation, the exception is not raised

— A bitisset in the result register to indicate that such a condition occurred
— Speculative bits are simply propagated by speculative instructions

— When a non-specul ative operation encounters aregister with the
speculative bit set, an exception is raised

3/4/2006

(H1) Compiler Use of Speculative Operations

e Hereisan optimization that uses speculative instructions:

vl = Dl VE vl1,v?2

vl = DIV vi,v2 S
v3 = ADD v1,5 v3 = ADD v1,5

— Also the effect of the DIV latency is reduced
— If adivide-by-zero occurs, an exception will be raised by ADD

3/4/2006 9

HW Support for Predication (H2)

« Conditional or predicated instructions
— Instruction is “conditionally” executed, else no-op
— Oiriginally: aseparate set of (ssmple) instructions
— Now: more genera support

* InHPL-PD, most operations can be predicated
— they can have an extra operand that is a one-bit predicate register.
r2 =ADDrl,r3 if p2
— If the predicate register contains 0, the operation is not performed

— Thevalues of predicate registers are typically set by “compare-to-
predicate” operations
pl = CWPP<= r4,r5

3/4/2006 10

Compiler Uses of Predication

e |f-conversion

e To ad code motion by instruction scheduler
— e.g. hyperblocks

3/4/2006

11

Uses of Predication; If-conversion

» [f-conversion replaces conditional branches with predicated operations
» For example, the code generated for:

if (a < Db)
cC = a;
el se
c = b;
i f (d < e)
f = d;
el se
f = e;

might be the two VLIW instructions:

CMPP.< a,b | P2

CMPP. >= a, b | P3

CWP.< d,e | P4

CMPP. >= d, e

a I f pl c =050 I f p2 f =d i f p3 f =e i f p4

3/4/2006 12

Compare-to-predicate instructions

e |Inprevious dlide, there were two pairs of almost identical instructions
— just computing complement of each other

» HPL-PD provides two-output CMPP instructions

— Y
pl,p2 = CVPP.W<.UN. UC rl,r2
A J

3/4/2006

13

(H2) If-conversion, revisited

« Using two-output CM PP instructions, the code generated for:

if (a < b)
cC = a

el se
c = b;

if (d < e)

f = d;

el se Only two CM PP operations,
f = e occupying less of the VLIW

might instead be: nstruction.

pl,p2 = CWPP.W<.UN. UC a,b |p3,p4 = CWPP. W<.UN. UC d, e

cC = a If plic =D i f p2 |f =d I f p3 f =e I f p4

3/4/2006 14

Uses of Predication: Hyperblock Formation

* In hyperblock formation, if-conversion is used to form larger blocks of
operations than the usual basic blocks

— tail duplication used to remove some incoming edges in middle of block
— if-conversion applied after tail duplication
— larger blocks greater opportunity for code motion to increase ILP

| Predicated Operations

. Tail Duplication If-conversion to
Basic Blocks form hyperblock

3/4/2006 15

HW Support for Memory Disambiguation (H3)

 Here'sadesirable optimization (due to long load latencies):

- rl = Lr2
Store r3, 4 — e
ri = Lr2 Store r3,4
rl = ADDrl,7 rl1= ADDrl,7

* However, this optimization is not valid if the load and store reference
the same location
— l.e,if r 2 andr 3 contain the same address

— thiscannot be determined at compiletime

« HPL-PD solvesthis by providing run-time memory disambiguation

3/4/2006

(H3) HW Support for Memory Disambiguation (cont’ d)

HPL-PD provides two special instructions to replace aload instruction:

e rl = LDS r2 ; Speculative load

— Initiates aload like anormal load instruction
— A log entry can made in atable to store the memory location

e rl = LDV r2 ; load verify
— Checksto seeif storeto memory location has occurred sincethe LDS
— If so, the new load is issued and the pipeline stalls. Otherwise, it’s a no-op

The previous optimization becomes

ri = Lr2 rl = LDSr2
Storer3, 4 —) —
ri = Lr2 Store r3, 4 Storer3, 4
rl = ADDrl,7 rl = ADDrl,7 rl = LDV r2
rl = ADDrl,7

3/4/2006 17

More Sophisticated Compiler Optimizations:
Software Pipelining (S2)

« Software Pipelining is the technigque of scheduling instructions across
severd iterations of aloop

— reduces pipeline stalls on sequentia pipelined machines
— exploitsinstruction level parallelism on superscalar and VLIW machines

— intuitively, iterations are overlaid so that an iteration starts before the
previous iteration have completed

sequential —— | , pipelined

loop loop

3/4/2006 18

(S2) Software Pipelining Example

e Source code:

for(i=0;i<n;i++) sum += a[i] ri=1Lr0
--- :stall
: _ r2z = Add r2,r1
e Loop body in assembly: 0 = Add 10 12
rl1 =L rO ra =L r3
--- :stall --- ;stall
r2 = Add r2,r1 r2 = Add r2,r4
rO0 = add r0, 4 r3 = add r3, 12
r7 =L r6
--- :stall
r2 = Add r2,r7
re = add re6, 12
e Unroll loop and r10 = L r9
allocate registers --- :stall
r2 = Add r2,r10
r9 = add r9, 12

3/4/2006 19

(S2) Software Pipelining Example (cont’ d)

» Schedule unrolled Instructions, exploiting VLIW (or not)

,
N
Il

L rO
L r3

q
=
o
—
AN
[

r7z rl =
r10 r4

LrOE
Lr3§

r/ =L r6

r2 = Add r 2,
r2 = Add r 2,
r2 = Add r 2,
r2. = Add r2.
r2 = Add r 2,
r2 = Add r 2,
r2 = Add r 2,
r2 = Add r 2,
r2 = Add r 2,
r2z = Add r 2,
Add r2,r10

|dentify

repeating
pattern
(kernel)

20

(S2) Software Pipelining Example (cont)

L oop becomes:

L rO 1 prolog

L r3
Add r2,r1 r7 =L r6

....... :Addr012r2:Addr2r4r10:Lr9
= Add r3,12 r2 = Add r2,r7 r1 =L Tr0 : _
= Add r6,12 r2 = Add r2,r10 r4 = L r3 kernel
r9 = Add r9,12 r2 = Add rz,rir7 =z L.r6
= Add r0,12 r2 = Add r2,r4 r10 = L r9
= Add r3,12 r2 = Add r2,r7 - .
= Add r6,12 Add r2,r10 epilog
= Add r9, 12

3/4/2006

Constraints on Software Pipelining

The instruction-level parallelism in a software pipelineislimited by

 Resource Constraints
— VLIW instruction width, functional units, bus conflicts, etc.

e Dependence Constraints
— particularly loop carried dependences between iterations

— arisewhen
» the sameregister is used across several iterations
» the same memory location is used across several iterations

g

Memory Aliasing

3/4/2006

(S2) Aliasing-based L oop Dependences

Source code:
for(i=3;

ali] =

\/

dependence spans three iterations

“distance=3"

Pipeline:

kernel
1 cycle

3/4/2006

Assembly: || oad
I <n;i++) add
a[i-3] + c; st or e
I NCr 5
I ncr
| oad
add | oad
store |add | oad
incr_.|storeradd || oatN_
incr, |incr,|store |add [Yoad
Incr, |incr_;|store |add
i ncr, [incr_;|store
I ncr, [incr g
Il ncr

| oad
add
store
| NCr 5
Il ncr

23

Dynamic Memory Aliasing

« What if the code were:

for(i=A1<n;i++)
al[i] = a[i-k] + c;

where k is unknown at compile time?

— The dependence distance isthe value of k (“dynamic” aliasing)

* k =0 (no dependence), k > 0 (true dependence with distance k),
k <0 (anti-dependence with distance |k |)

— Theworst caseisk =1

 What can the compiler do?
— Assume the worst, and generate the most pessimistic pipelined schedule

— Generate different versions of the software pipeline for different distances
 branch to the appropriate version at run-time
» possible code explosion, cost of branch

3/4/2006 24

Summary: VLIW Processors

« Architectura features enable aggressive compiler optimizations
— To pack multiple instructions per VLIW packet
— Loop unrolling and software pipelining
e Hardware support
— Speculative instructions
— Conditional/Predicated instructions
— Run-time memory disambiguation

— Hardware support for preserving exception behavior
— Poison bits, reorder buffer

e Limiting factors
— Increased code size: requires aggressive unrolling; not full instructions
— VLIW lock step => 1 hazard and al instructions stall
— Binary code compatibility is practical weakness

3/4/2006

25

