
4/6/2006 3

Snooping - Cache State Machine: Combined

State machine
for CPU requests
for each cache block and
for bus requests
for each cache block Place read miss

on bus

Invalid
Shared

(read only)

Exclusive
(read/write)

Place Write Miss on bus

Write back
block; (abort

memory access)

Write miss
for this block

Write miss
for this block

Read miss
for this block

Write back
block; (abort
memory access)

CPU Read

CPU Read hit

CPU Read miss
Write back block,
Place read miss
on bus

CPU Read miss
Place read miss
on bus

CPU Read hit
CPU Write hit

CPU Write

CPU Write
Place write miss on bus

CPU Write Miss
Write back cache block
Place write miss on bus

4/6/2006 4

Read miss on bus

CPU read miss

With A New State: Clean Exclusive (HW 4)

Invalid
Shared

(read only)

Exclusive
(read/write)

Dirty!

CPU Read

CPU Write

CPU Read hit

CPU Read miss

CPU Write

CPU Read miss

CPU Write Miss

CPU read hit
CPU write hit

Write miss
for this block

Write miss
for this block

Read miss
for this block

*

CPU ReadWrite miss on bus Clean
Exclusive

*

CPU Read miss

CPU Write miss

CPU Write hit

*
CPU Read miss

CPU Read hit
CPU read miss

4/6/2006 5

Larger Multiprocessors

• Separate Memory per Processor
• Local or Remote access via memory controller
• One Cache Coherency solution: non-cached pages
• Alternative: use a directory containing information for every block in

memory
– Which caches have a copy of block, dirty vs. clean, ...

• Info per memory block vs. per cache block?
– Simpler protocol (centralized/one location)
– Directory is ƒ(memory size x number of processors) vs. ƒ(cache size)

• Prevent directory as bottleneck?
distribute directory entries with memory, each keeping track of which
processors have copies of their memory blocks and in what state

4/6/2006 6

Distributed Directory

Processor
& Caches

Memory

Processor
& Caches

Processor
& Caches

Processor
& Caches

Interconnection network

Directory

Memory

Directory

Memory

Directory

Memory

Directory

I/O I/O I/O I/O

4/6/2006 7

Directory Protocol

• Similar to Snooping Protocol: Three states
– Shared: ≥ 1 processor(s) have data, memory up-to-date
– Uncached: (no processor has it; not valid in any cache)
– Exclusive: 1 processor (owner) has data; memory out-of-date

• In addition to cache state, must track which processors have data
when in the shared state (usually bit vector, 1 if processor has copy)

• Keep it simple(r):
– Writes to non-exclusive data

write miss
– Processor blocks until access completes
– Assume messages received and acted upon in order sent

4/6/2006 8

Directory Protocol (Cont’d)

• No bus and don’t want to broadcast:
– interconnect no longer single arbitration point
– all messages have explicit responses

• Typically 3 processors involved
– Local node where a request originates
– Home node where the memory location of an address resides
– Remote node has a copy of a cache block, whether exclusive or shared

• Example messages on next slide:
P = processor number, A = address

4/6/2006 9

Directory Protocol Messages

Message type Source Destination Msg Content
Read miss Local cache Home directory P, A

– Processor P has a read miss at address A; request data and make P a read sharer
Write miss Local cache Home directory P, A

– Processor P has a write miss at address A; request data and make P exclusive owner

Invalidate Home directory Remote caches A
– Invalidate a shared copy of data at address A

Fetch Home directory Remote cache A
– Fetch block at address A & send it to its home directory; change state to shared at remote

Fetch/Invalidate Home directory Remote cache A
– Fetch block at address A & send it to its home directory; invalidate the block in the cache

Data value reply Home directory Local cache Data
– Return a data value from the home memory

Data write-back Remote cache Home directory A, Data
– Write-back a data value for address A

4/6/2006 10

State Transition Diagram for an Individual
Cache Block in a Directory Based System

• States identical to snooping case
• Transactions very similar
• Transitions caused by read misses, write misses,

invalidates, and data fetch requests
• Generates read miss & write miss messages to home

directory
• Write misses that were broadcast on the bus for snooping

– explicit invalidate & data fetch requests

4/6/2006 11

CPU - Cache State Machine

• State machine for
each Cache block

Fetch/Invalidate
send Data Write Back message

to home directory

InvalidateInvalid
(Uncached)

Shared
(read only)

Exclusive
(read/writ)

CPU Read hit

CPU Read
Send Read Miss
Message to h.d.

CPU Write:
Send Write Miss
msg to h.d.

CPU Write:Send
Write Miss message
to home directory

CPU read hit
CPU write hit

Fetch: send Data Write Back
message to home directory

CPU read miss:
Send Read Miss

CPU write miss:
send Data Write Back message
and Write Miss to home
directory

CPU read miss: send Data
Write Back message and
read miss to home directory

4/6/2006 12

State Transition Diagram for the Directory

• Same states & structure as the transition diagram for an
individual cache

• Two actions: update of directory state & send messages to
satisfy requests

• Keeps track of all copies of memory block
– Uses a sharing set called Sharers

4/6/2006 13

Example Directory Protocol

• Message sent to directory causes two actions:
– Update the directory
– More messages to satisfy request

• Block is in Uncached state: the copy in memory is the current value;
only possible requests for that block are:

– Read miss: requesting processor sent data from memory & requestor made
(the first) sharing node; state of block made Shared

– Write miss: requesting processor is sent the value. The block is made
Exclusive to indicate that the only valid copy is cached. Sharers indicates the
identity of the owner.

• Block is in Shared state: the memory value is up-to-date:
– Read miss: requesting processor is sent back the data from memory &

requesting processor is added to the sharing set.
– Write miss: requesting processor is sent the value. All processors in the set

Sharers are sent invalidate messages & Sharers is set to identity of
requesting processor. The state of the block is made Exclusive.

4/6/2006 14

Example Directory Protocol (Cont’d)

• Block is Exclusive: current value of the block is held in the cache of
the processor identified by the set Sharers (the owner).

• Three possible directory requests:
– Read miss: owner processor is sent a data fetch message, causing state of

block in owner’s cache to transition to Shared and causes owner to send
data to directory, where it is written to memory & sent back to requesting
processor
Identity of requesting processor is added to set Sharers, which still
contains the identity of the processor that was the owner (since it still has
a readable copy); state is shared

– Data write-back: owner processor is replacing the block and hence must
write it back, making memory copy up-to-date
(the home directory essentially becomes the owner), the block is now
Uncached, and the Sharer set is empty

– Write miss: block has a new owner. A message is sent to old owner
(fetch/invalidate) causing the cache to send the value of the block to the
directory from which it is sent to the requesting processor, which becomes
the new owner. Sharers is set to identity of new owner, and state of block
is made Exclusive. The old owner’s cache block status becomes Invalid

4/6/2006 15

Directory State Machine

• State machine for
each memory block

• Uncached state if in memory

Data Write Back:
Sharers = {}

(Write back block)

Uncached
Shared

(read only)

Exclusive
(read/writ)

Read miss:
Sharers = {P}
send Data Value
Reply

Write Miss:
send Invalidate
to Sharers;
then Sharers = {P};
send Data Value
Reply msg

Write Miss:
Sharers = {P};
send Data
Value Reply
msg

Read miss:
Sharers += {P};
send Fetch;
send Data Value Reply
msg to remote cache
(Write back block)

Read miss:
Sharers += {P};
send Data Value Reply

Write Miss:
Sharers = {P};
send Fetch/Invalidate;
send Data Value Reply
msg to remote cache

4/6/2006 16

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

4/6/2006 17

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

4/6/2006 18

Example

P1 P2 Bus Directory Memory
step State Addr Value State Addr Value Action Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1

P2: Write 40 to A2

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

4/6/2006 19

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory

Write BackWrite Back

P1 P2 Bus Directory Memory
step State Addr ValueState Addr ValueAction Proc. Addr Value Addr State {Procs} Value

P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}
Excl. A1 10 DaRp P1 A1 0

P1: Read A1 Excl. A1 10
P2: Read A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar. {P1,P2} 10

P2: Write 40 to A2

4/6/2006 20

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory
P1 P2 Bus Directory Memory

step State Addr ValueState Addr ValueAction Proc. Addr Value Addr State {Procs} Value
P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2

4/6/2006 21

Example

P2: Write 20 to A1

A1 and A2 map to the same cache block

Processor 1 Processor 2 Interconnect MemoryDirectory
P1 P2 Bus Directory Memory

step State Addr ValueState Addr ValueAction Proc. Addr Value Addr State {Procs} Value
P1: Write 10 to A1 WrMs P1 A1 A1 Ex {P1}

Excl. A1 10 DaRp P1 A1 0
P1: Read A1 Excl. A1 10
P2: Read A1 RdMs P2 A1

Shar. A1 10 Ftch P1 A1 10 10
Shar. A1 10 DaRp P2 A1 10 A1 Shar.{P1,P2} 10
Excl. A1 20 WrMs P2 A1 10

Inv. Inval. P1 A1 A1 Excl. {P2} 10
P2: Write 40 to A2 WrMs P2 A2 A2 Excl. {P2} 10

WrBk P2 A1 20 A1 Unca. {} 20
Excl. A2 40 DaRp P2 A2 0 A2 Excl. {P2}

4/6/2006 22

Implementing a Directory

• We assume operations atomic, but they are not; reality is much harder;
must avoid deadlock when run out of buffers in network

• Optimization:
– read miss or write miss in Exclusive: send data directly to requestor from

owner vs. first to memory and then from memory to requestor

4/6/2006 23

Synchronization

• Why Synchronize? Need to know when it is safe for different processes
to use shared data

• Issues for Synchronization:
– Uninterruptible instruction to fetch and update memory (atomic operation)
– User level synchronization operation using this primitive
– For large scale MPs, synchronization can be a bottleneck; techniques to

reduce contention and latency of synchronization

4/6/2006 24

Uninterruptable Instruction: Fetch and Update Memory

• Atomic exchange: interchange a value in a register for a value in
memory

0 => synchronization variable is free
1 => synchronization variable is locked and unavailable
– Set register to 1 & swap
– New value in register determines success in getting lock

0 if you succeeded in setting the lock (you were first)
1 if other processor had already claimed access

– Key is that exchange operation is indivisible
• Test-and-set: tests a value and sets it if the value passes the test
• Fetch-and-increment: it returns the value of a memory location and

atomically increments it
– 0 => synchronization variable is free

4/6/2006 25

• Hard to have read & write in 1 instruction: use 2 instead
• Load linked (or load locked) + store conditional

– Load linked returns the initial value
– Store conditional returns 1 if it succeeds (no other store to same memory

location since preceding load) and 0 otherwise

• Example doing atomic swap with LL & SC:
try: mov R3,R4 ; move exchange value

ll R2,0(R1) ; load linked
sc R3,0(R1) ; store conditional
beqz R3,try ; branch store fails (R3 = 0)
mov R4,R2 ; put load value in R4

• Example doing fetch & increment with LL & SC:
try: ll R2,0(R1) ; load linked

addi R2,R2,#1 ; increment (OK if reg–reg)
sc R2,0(R1) ; store conditional
beqz R2,try ; branch store fails (R2 = 0)

Uninterruptable Instruction: Fetch and Update Memory (Cont’d)

4/6/2006 26

User Level Synchronization

• Spin locks: processor continuously tries to acquire, spinning around a
loop trying to get the lock

addi R2,R0,#1
lockit: exch R2,0(R1) ;atomic exchange

bnez R2,lockit ;already locked?

• What about MP with cache coherency?
– Want to spin on cache copy to avoid full memory latency
– Likely to get cache hits for such variables

• Problem: exchange includes a write, which invalidates all other copies;
this generates considerable bus traffic

• Solution: start by simply repeatedly reading the variable; when it
changes, then try exchange (“test and test&set”):

lockit: ld R2,0(R1) ;load var
bnez R2,lockit ;not free=>spin

addi R2,R0,#1 ;load locked value

exch R2,0(R1) ;atomic exchange
bnez R2,lockit ;already locked?

4/6/2006 27

Memory Consistency Models

• Cache coherence ensures processors see a consistent view of memory
• What is consistency? How consistent the view should be?
• When must a processor see the new value? Consider the following:

Assume both P1 and P2 have cached A and B with their initial value of zero
P1: A = 0; P2: B = 0;

.....
A = 1; B = 1;

L1: if (B == 0) ... L2: if (A == 0) ...

• Impossible for both if statements L1 & L2 to be true?
– What if write invalidate is delayed & processor continues?

• Memory consistency models:
what are the rules for such cases?

• Sequential consistency: result of any execution is the same as if the
accesses of each processor were kept in order and the accesses among
different processors were interleaved assignments before ifs above

– SC: delay all memory accesses until all invalidates done

4/6/2006 28

Other Memory Consistency Models

• More relaxed models lead to faster execution
• Not really an issue for most programs as they are synchronized

– A program is synchronized if all access to shared data are ordered by
synchronization operations

write (x)
...
release (s) {unlock}
...
acquire (s) {lock}
...
read(x)

• Only those programs willing to be nondeterministic are not
synchronized: outcome function of processor speed (data race)

• Several Relaxed Models for Memory Consistency since most programs
are synchronized; characterized by their attitude towards: RAR, WAR,
RAW, WAW to different addresses

4/6/2006 29

Summary

• Caches contain all information on state of cached memory
blocks

• Snooping and Directory Protocols similar
• Bus makes snooping easier because of broadcast

– Uniform Memory Access

• Directory has extra data structure to keep track of state of all
memory blocks

– Distributing directory
– Scalable shared address multiprocessor
– Non Uniform Memory Access (NUMA)

4/6/2006 30

Cross Cutting Issues: Performance Measurement of
Parallel Processors
• Performance: how well scale as number of processors increases
• Speedup fixed as well as scaleup of problem

– Assume benchmark of size n on p processors makes sense: how scale
benchmark to run on m * p processors?

– Memory-constrained scaling: keeping the amount of memory used per
processor constant

– Time-constrained scaling: keeping total execution time, assuming perfect
speedup, constant

• Example: 1 hour on 10 P, time ~ O(n3), 100 P?
– Time-constrained scaling: 1 hour, => 101/3n => 2.15n scale up
– Memory-constrained scaling: 10n size => 103/10 => 100X or 100 hours!

10X processors for 100X longer???
– Need to know application well to scale: # iterations, error tolerance

4/6/2006 31

Cross Cutting Issues:
Memory System Issues
• Multilevel cache hierarchy + multilevel inclusion--every level of cache

hierarchy is a subset of next level-- then can reduce contention between
coherence traffic and processor traffic

– Hard if cache blocks different sizes
• Also issues in memory consistency model and speculation, nonblocking

caches, prefetching

4/6/2006 32

Pitfall: Measuring MP performance by linear
speedup v. execution time

• “linear speedup” graph of performance as scale CPUs
• Compare best algorithm on each computer
• Relative speedup - run same program on MP and uniprocessor

– But parallel program may be slower on a uniprocessor than a
sequential version

– Or developing a parallel program will sometimes lead to algorithmic
improvements, which should also benefit uni

• True speedup - run best program on each machine
• Can get superlinear speedup due to larger effective cache with

more CPUs

4/6/2006 33

Fallacy: Linear speedups are needed to make
multiprocessors cost-effective
• Mark Hill & David Wood 1995 study
• Compare costs SGI uniprocessor and MP
• Uniprocessor = $38,400 + $100 * MB
• MP = $81,600 + $20,000 * P + $100 * MB
• 1 GB, uni = $138k v. mp = $181k + $20k * P
• What speedup for better MP cost performance?

– 8 proc $341k; $341k/138k => 2.5X
– 16 proc need only 3.6X, or 25% linear speedup

• Even if need some more memory for MP, not linear

4/6/2006 34

Fallacy: Multiprocessors are “free”

• “Since microprocessors contain support for snooping caches, can
build small-scale, bus-based multiprocessors for no additional cost”

• Need more complex memory controller (coherence) than for
uniprocessor

• Memory access time always longer with more complex controller
• Additional software effort: compilers, operating systems, and

debuggers all must be adapted for a parallel system

