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Outline

• Instruction set principles
– What is an instruction set?
– What is a good instruction set?
– Instruction set aspects
– RISC vs. CISC

Instruction set examples: Appendices C, D, E, & F (online)

• Pipelining
– Why pipelining?
– Basic stages of a pipeline
– Expected improvement
– Complications?

[ Hennessy/Patterson CA:AQA (3rd Edition): Chapter 2 & Appendix A]
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Instruction Set Principles

[ Hennessy/Patterson CA:AQA (3rd Edition): Chapter 2 & Appendix A]



Instruction Set Architecture (ISA)

 “Instruction set architecture is the structure of a computer that a 
machine language programmer must understand to write a correct 
(timing independent) program for that machine.”

 Source: IBM in 1964 when introducing the IBM 360 architecture

• An instruction set is a functional description of the processor
– What operations can it do
– What storage mechanisms does it support

• ISA defines the hardware/software interface
A good interface:
– Lasts through many implementations 
– Can be used in many different ways 
– Provides convenient functionality to higher levels 
– Permits an efficient implementation at lower levels 



Instruction Set Design Issues

• What operations are supported? 
– add, sub, mul, move, compare . . .

• Where are operands stored?
– Registers (how many of them are there), memory, stack, accumulator

• How many explicit operands are there?     
– 0, 1,  2,  or 3 

• How is the operand location specified?
– register, immediate,  indirect, . . . 

• What type and size of operands are supported?
– byte, int, float, double, string, vector, . . .
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A "Typical" RISC

• 32-bit fixed format instruction (3 formats)
• Memory access only through load/store operations
• 32 32-bit general-purpose registers 

– R0 contains zero
– Double precision operations take pair (floating point registers may be 

separate)
• 3-address (src1, src2, dst), register-register arithmetic instructions
• Single address mode for load/store: base + displacement

– no indirection
• Simple branch conditions
• Delayed branch

• Examples: 
SUN SPARC, MIPS, HP PA-RISC, DEC Alpha, IBM PowerPC, CDC 
6600, CDC 7600, Cray-1, Cray-2, Cray-3
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Example: MIPS

Op
31 26 01516202125

Rs1 Rs2 Rd Opx

Register-Register
561011

Op
31 26 01516202125

Rs1 Rd immediate

Register-Immediate (e.g., load/store)

Op
31 26 01516202125

Rs1 Rs2/Opx immediate

Branch

Op
31 26 025

PC-region target address

Jump / Call



ISA Metrics

• Orthogonality
– No special registers, few special cases, all operand modes available with 

any data type or instruction type

• Completeness
– Support for a wide range of operations and target applications

• Regularity
– No overloading for the meanings of instruction fields

• Streamlined
– Resource needs easily determined

• Ease of compilation (or assembly language programming)

• Ease of implementation



Closer look at ISA Aspects

• Operand location

• Addressing modes

• Types of instructions



ISA Aspect (1): Operand Location

Accumulator (before 1960):
1 address add A acc ←  acc + mem[A]

Stack (1960s to 1970s):
0 address add tos ←  tos + next

Memory-Memory (1970s to 1980s):
2 address add A, B mem[A] ←  mem[A] + mem[B]
3 address add A, B, C mem[A] ←  mem[B] + mem[C]

Register-Memory (1970s to present):
2 address add R1,  A R1 ←  R1 + mem[A]

load R1, A R1 ←  mem[A]

Register-Register, also called Load/Store (1960s to present):
3 address add R1, R2, R3 R1 ←  R2 + R3

load R1, R2 R1 ←  mem[R2]
store R1, R2 mem[R1] ←  R2
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Choices for Operand Location

• Running example: C:= A + B

• Accumulator
load A accum = M[A];
add B accum += M[B];
store C M[C] = accum;
+ Less hardware, code density
– Memory bottleneck

• Stack
push A S[++tos] = M[A];
push B S[++tos] = M[B]
add t1= S[tos--]; t2= S[tos--]; S[++tos]= t1 + t2;
pop C M[C] = S[tos--];
+ Less hardware, code density
– Memory, pipelining bottlenecks
– x86 uses stack model for floating point computations
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• Running example: C:= A + B
• Memory-Memory

add C, A, B M[C] = M[A] + M[B];
+ Code density (most compact)
– Memory bottleneck
– No current machines support memory-memory (VAX did)

• Memory-Register
load R1, A R1 = M[A];
add R1, B R1 += M[B];
store C, R1 M[C] = R1;
+ Like several explicit (extended) accumulators
+ Code density, easy to decode
– Asymmetric operands, different amount of work per instruction
– Examples: IBM 360/370, x86, Motorola 68K

Choices for Operand Location (cont’d)
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• Running example: C:= A + B
• Register-Register (Load-Store)

load R1, A R1 = M[A];
load R2, B R2 = M[B];
add R3, R1, R2 R3 = R1 + R2;
store C, R3 M[C] = R3;
+ Easy decoding, operand symmetry
+ Deterministic cost for ALU operations (simple cost model)
+ Scheduling opportunities
– Code density

Choices for Operand Location (cont’d)
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Operand Location: Registers vs. Memory

• Pros and cons of registers
+ Faster, direct access
+ Simple cost model (fixed latency, no misses)
+ Short identifier
– Must save/restore on procedure calls, context switches
– Fixed size (larger-sized structures must live in memory)

• Pros and cons of more registers
+ Possible to keep more operands for longer in faster memory

• Shorter operand access time, lower memory traffic
– Longer specifiers
– Larger cost for saving CPU state
– Trend towards more registers

• 8 (x86) -> 32 (MIPS/Alpha/PPC) -> 128 (IA-64)
• Driven by increasing compiler involvement in scheduling
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ISA Aspect (2): Addressing

• Endian-ness: Order of bytes in words
– Big: byte at lowest address has the most significance (big end) 

• E.g., IBM, Sun SPARC
– Little: bytes at lower address have lower significance (little end)

• E.g., x86
– Some processors allow mode to be selectable

• E.g., PowerPC, MIPS (new implementations of the ISA)

• Alignment: Natural boundaries defined by architecture
– Aligned address: (address % size) equals 0

• Different ISAs support different restrictions on alignment
– None (all alignments supported by hardware): expensive/exception handling
– Restricted: misaligned access traps to software
– Middle ground: misaligned data okay, but requires multiple instructions

• E.g., MIPS: lwl/lwr (Load Word Left/Right: only modify part of register)

7 6 5 4 3 2 1 0

0 1 2 3 4 5 6 7
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Types of Addressing Modes (VAX)

Mode Example Action
1. Register direct add R4, R3 R4 ← R4 + R3
2. Immediate add R4, #3 R4 ← R4 + 3
3. Displacement add R4, 100(R1) R4 ← R4 + M[100+R1]
4. Register indirect add R4, (R1) R4 ← R4 + M[R1]
5. Indexed add R4, (R1 + R2) R4 ← R4 + M[R1 + R2]
6. Direct add R4, (1000) R4 ← R4 + M[1000]
7. Memory Indirect add R4, @(R3) R4 ← R4 + M[M[R3]]
8. Autoincrement add R4, (R2)+ R4 ← R4 + M[R2]

R2 ← R2 + d
9. Autodecrement add R4, (R2)– R4 ← R4 + M[R2]

R2 ← R2 – d
10. Scaled add R4, 100(R2)[R3]    R4 ← R4 + 

M[100 + R2 + R3*d]
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Which modes are actually used?

• Study by Clark and Emer
– Modes 1–4 account for 93% of all VAX operands

• Register mode responsible for roughly half
• Memory modes

• An example of making the common case fast
– RISC machines typically implement register, immediate, and displacement
– Synthesize all other modes in software
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Addressing Modes for Signal Processing

Two additional modes, motivated by DSP applications
• Modulo or circular addressing

– DSPs deal with large (infinite, continuous) streams of data
– Typically encoded as a circular buffer (mode allows auto-reset)
– Keeps start and end registers with each address register
– Allows autoincrement/autodecrement modes to reset the address

• Bit reverse addressing
– Permit permutations on address (to support kernels such as FFT)
– E.g., address/displ. (100) results in access to address/displ. (001)

• Used in assembly implementations of some libraries

• Renewed importance of autoincrement and autodecrement modes
– Study on TI TMS320C54x DSP finds autoincrement mode use of ~18.8%



ISA Aspect (3): Types of Operations

• Arithmetic and Logic: AND, ADD
• Data Transfer: MOVE, LOAD, STORE
• Control BRANCH, JUMP, CALL
• System OS CALL, VM 
• Floating Point ADDF, MULF, DIVF
• Decimal ADDD, CONVERT
• String MOVE, COMPARE
• Graphics (DE)COMPRESS
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Relative Frequency of Instructions

• For the 80x86, averaged over five SPECint92 programs

• Simple instructions dominate

Rank Instruction Frequency 
1 load 22% 
2 branch 20% 
3 compare 16% 
4 store 12% 
5 add 8% 
6 and 6% 
7 sub 5% 
8 register move 4% 
9 call 1% 

10 return 1% 
Total  96% 

9 
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Operations for Media and Signal Processing

• Results of media processing gauged in terms of human perception
– Narrow data items (8-16 bits) as opposed to 32 or 64-bit words
– Lower precision requirements
– Real-time requirements → cannot cause overflow traps

• Several ISAs have been extended to support graphics and multimedia
– Intel: MMX, Streaming SIMD Extensions (SSE, SSE2, and SSE3)
– AMD: 3DNow!
– Sun: Visual Instruction Set (VIS)
– Motorola and IBM: AltiVec

• Common theme
– Partitioned operations (SIMD), pack/unpack operations
– Saturating arithmetic
– Multiply-accumulate (MAC) instructions (dot products and vector multiplies)



2/1/2006 59

MMX

• Packed data types
– Packed byte
– Packed word
– Double word
– Quad word
– Stored in 64-bit FP registers

+ MMX does not add any new state to the processor
– MMX and FP don’t work well together

– SIMD instructions work on the packed types (single cycle)
– Minimal hardware to isolate sub-operations (5% increase in chip area)
– E.g., PADD[W]

a3 a1 a0a2

b3 b1 b0b2

a3 + b3 a1 + b1 a0 + b0a2 + b2
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MMX (cont’d)

• Saturating arithmetic
– Both wrap-around and saturating adds are supported
– Saturating mode: results that overflow are set to the largest value

• Multiply-accumulate (MAC) operations
– E.g., PMADDWD: Packed multiply-add word to double

PADD[W]: Packed wrap-around add PADDUS[W]: Packed saturating add

a3 a1 FFFFa2

b3 b1 8000b2

a3 + b3 a1 + b1 7FFFa2 + b2

a3 a1 FFFFa2

b3 b1 8000b2

a3 + b3 a1 + b1 FFFFa2 + b2

a3 a1 a0a2

b3 b1 b0b2

a3*b3 + a2*b2 a1*b1 + a0*b0
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MMX: Example

• Vector dot product on an 8-element vector
– 9 MMX instructions (as compared to 40 without MMX)

∑ ×= )()( ibiax

a7 a5 a4a6

b7 b5 b4b6

a7*b7 + a6*b6 a5*b5 + a4*b4

a3 a1 a0a2

b3 b1 b0b2

a3*b3 + a2*b2 a1*b1 + a0*b0

PMADDWD
(2)

copy and shift
(4) a7*b7 + a6*b6 a3*b3 + a2*b2

a7*b7 +…+ a4*b4 a3*b3 +…+ a0*b0
PADDD

(2)

a7*b7 +…+ a4*b4

a7*b7 +…+ a0*b0
PADDD

(1)
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Performance Impact of MMX

• Pentium processors (200 MHz, 512 KB L2) with and without MMX
(“MMX Technology Architecture Overview” – Mittal, Peleg, Weiser

Intel Technology Journal, 3Q 1997)

• More recent Intel processors (Pentium III and 4) incorporate additional 
instructions: Streaming SIMD Extensions (SSE, SSE2, and SSE3)
– New 128-bit registers, data prefetching
– SIMD floating point operations 
– Performance gain of 1.5 to 2.0 on video and 3D applications

1.64255.43156.00Overall
2.13318.90149.80Audio
1.03166.44161.523D geometry

4.67743.90159.03Image Processing
1.72268.70155.52Video

SpeedupWith MMXWithout 
MMX

Application
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Control Instructions

• Instructions that change the value of the PC

• Three kinds of instructions
– (conditional) branches, (unconditional) jumps
– Function calls, function returns
– System calls, system returns

• Questions
– What kinds of conditions are supported? How are the conditions set?
– How is the target address specified?
– For function and system calls, how is the return address specified?

• Most recent processors use an implicit register
+ Simple scheme
– Software needs to save/restore register contents

– Which instructions save/restore CPU state?
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Control Instructions (1): Conditions

• Compare and branch
+ Single instruction branches
– Needs ALU stage for branch instructions as well; May be too much work 

for pipelined execution
• Condition codes (e.g., zero, negative, overflow) 

Condition code set by ALU operations  
+ Sometimes set for free 
– Part of the CPU state, needs to be saved and restored
– Constrains the ordering of instructions
“compare” instruction can be used

• Recent processors (e.g., Alpha, IA-64) offer predicated instructions
– combine comparison, branch, and ALU operations
– more about these later in the course



2/1/2006 65

Control Instructions (2): Target Address

Four choices
• PC-relative with immediate

+ Position independent, all info present for computing target
+ Short immediate sufficient (compact instructions)
– Target must be known statically
Uses: branches/jumps within function

• Arbitrary immediate
Uses: function calls

• Register
+ Short specifier, target can be dynamic
– Extra instruction to load register
Uses: indirect calls (e.g., DLLs, virtual functions), returns, switches

• Vectored traps
+ Protection (hence, heavyweight)
Uses: system calls
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Control Instructions (3): Save and Restore State

• Only call (function and system) instructions need to save state
– Function calls: save registers
– System calls: save registers, flags, PC, PSW, …

Two choices
• Software saving/restoring

– Calling convention distinguishes between caller- and callee-save registers
• Hardware saving/restoring

– Explicit instructions: VAX
– Implicit: SPARC register windows

• 32 registers: 8 input, 8 output, 8 local, 8 global
• On call: 8 output of caller become 8 input of callee

– local/output registers are new set (no need to save/restore)
+ No save/restore on shallow call graphs
– Makes advanced architectural techniques (e.g., register renaming) hard
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The RISC vs. CISC Debate

• Early 80s: Several projects challenged how processors were being built
– Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM 801
– Contrasted their design, RISC (Reduced Instruction Set Computer) with 

what began to be called CISC (Complex Instruction Set Computer)

• RISC argument
– CISC is too complex to ever be implemented well

• too many addressing modes, variable format instructions, many multi-cycle 
operations, microcoding, hand-assembled programs

– RISC characterized by
• Single-cycle operation
• Hardwired control
• Load/store organization
• Fixed instruction format
• Few modes
• Reliance on compiler optimization

Motivated by quantitative 
studies of program behavior 
Focus on optimizing the common case
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The Reality of RISC vs. CISC

• RISC does help compiler optimizations
– Load/store architecture supports register allocation

• Explicit choices of what values reside where in the memory hierarchy
– Simple instructions make instruction selection, optimization easier

• However, CISC does not have any fundamental implementation flaws
– Fixable with more transistors

• Good CISC pipeline can be constructed with modest increase in transistors
• Not an issue given Moore’s law

• Most commercially successful ISA is x86 (CISC)
– Current-day Pentium processors translate CISC instructions into 

sequences of RISC micro-ops
• Internal microarchitecture is actually RISC

– Better substrate for implementing advanced architectural techniques
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Announcements

– Assignment 0 out today; suggested due date: By next class (Feb. 1st) 
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Pipelining

[ Hennessy/Patterson CA:AQA (3rd Edition): Chapter 2, Appendix A]
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Computer Pipelines

• Computers execute billions of instructions, so instruction throughput is 
what matters

Main idea behind pipelining
• Divide instruction execution across several stages

– each stage accesses only a subset of the CPU’s resources
• Example: Classic 5-stage RISC pipeline

IF ID EX MEM WB
• Simultaneously have different instructions in different stages

– Ideally, can issue a new instruction every cycle
– Cycle time determined by longest stage

• Pipelining only improves throughput, not latency
– Each instruction still needs to go through each stage
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• Some key properties of RISC architectures simplify implementation
– all instructions same length
– registers located in same place in instruction format
– memory operands only in loads or stores

• E.g., MIPS

Op
31 26 01516202125

rs1 rd immediate

Op
31 26 025

Op
31 26 01516202125

rs1 rs2

PC-region target address

rd

Register-Register (R-type) ADD R1, R2, R3
561011

Register-Immediate (I-type) SUB R1, R2, #3

Jump / Call (J-type) JUMP end

func

(jump, jump and link, trap and return from exception)

Classic 5-Stage RISC Pipeline
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Unpipelined Implementation of a RISC ISA

• Most MIPS instructions can be implemented in 5 cycles 
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Unpipelined Implementation (1) – Instruction Fetch
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Unpipelined Implementation (2) – Instruction Decode
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Unpipelined Implementation (3) – Execute
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LD/ST: Compute effective address
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Unpipelined Implementation (4) – Memory Access
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Unpipelined Implementation (4) – Write Back

L
M
D

A
LU

M
U

X

M
em

ory

R
eg

File

M
U

X
M

U
X

D
ata

M
em

ory

M
U

X

Sign
Extend

4

Adder Zero?

Next SEQ PC

PC

Next PC

Inst

RD

RS1

RS2

Imm

Memory
Access

Write
Back

Instruction
Fetch

Instr. Decode
Reg. Fetch

Execute
Addr. Calc

Update register file 
for LD, ALU ops



2/1/2006 79

CPI for the Multiple-Cycle RISC Implementation

• Branches and stores: 4 cycles (no WB), all other instructions: 5 cycles
– If 20% of the instructions are branches or loads

CPI = 0.8*5 + 0.2*4 = 4.80
• ALU operations can be allowed to complete in 4 cycles (no MEM) 

– If 40% of the instructions are ALU operations
CPI = 0.4*5 + 0.6*4 = 4.40

• Pipelining the implementation can help reduce the CPI

WBMEMEXIDIFi+4

WBMEMEXIDIFi+3

WBMEMEXIDIFi+2

WBMEMEXIDIFi+1

WBMEMEXIDIFi

987654321

Clock Number
Instr.
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Pipelined Implementation of a RISC ISA
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Pipelined Implementation of a RISC ISA (1): 
Separation of Instruction and Data Memories
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Pipelined Implementation of a RISC ISA (2):
Split-phase Register Access
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Visualizing Pipelining
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Speedup from Pipelining

• Assume that a multiple cycle RISC implementation has a 10 ns clock 
cycle, loads take 5 clock cycles and account for 40% of the 
instructions, and all other instructions take 4 clock cycles. 

• If pipelining the machine adds 1 ns to the clock cycle, how much 
speedup in instruction execution rate do we get from pipelining?

MC Ave. Instr. Time = Clock cycle x Average CPI
= 10 ns x (0.6 x 4 + 0.4 x 5)
= 44 ns

PL Ave. Instr. Time = 10 + 1 = 11 ns
Speedup = 44 / 11 = 4

• The above expression assumes a pipelining CPI of 1
Should we expect this in practice? Any complications?


