Outline

* Instruction set principles
— What 1s an instruction set?
— What 1s a good instruction set?
— Instruction set aspects

— RISC vs. CISC

Instruction set examples: Appendices C, D, E, & F (online)

* Pipelining
— Why pipelining?
— Basic stages of a pipeline
— Expected improvement

— Complications?

[Hennessy/Patterson CA: AQA (3" Edition): Chapter 2 & Appendix A]

2/1/2006

39

2/1/2006

Instruction Set Principles

[Hennessy/Patterson CA: AQA (3" Edition): Chapter 2 & Appendix A]

40

Instruction Set Architecture (ISA)

“Instruction set architecture is the structure of a computer that a
machine language programmer must understand to write a correct
(timing independent) program for that machine.”

Source: IBM in 1964 when introducing the IBM 360 architecture

* An instruction set 1s a functional description of the processor
— What operations can it do
— What storage mechanisms does it support

« ISA defines the hardware/software interface
A good interface:
— Lasts through many implementations
— Can be used in many different ways
— Provides convenient functionality to higher levels

— Permits an efficient implementation at lower levels

Instruction Set Design Issues

What operations are supported?

— add, sub, mul, move, compare . . .

* Where are operands stored?
— Registers (how many of them are there), memory, stack, accumulator

 How many explicit operands are there?
— 0,1, 2, or3

* How i1s the operand location specified?

— register, immediate, indirect, . . .

 What type and size of operands are supported?

— byte, int, float, double, string, vector, . . .

A "Typical" RISC

« 32-bit fixed format instruction (3 formats)
* Memory access only through load/store operations

e 32 32-bit general-purpose registers
— RO contains zero

— Double precision operations take pair (floating point registers may be
separate)

e 3-address (srcl, src2, dst), register-register arithmetic instructions

* Single address mode for load/store: base + displacement
— no indirection

e Simple branch conditions
« Delayed branch

« Examples:
SUN SPARC, MIPS, HP PA-RISC, DEC Alpha, IBM PowerPC, CDC
6600, CDC 7600, Cray-1, Cray-2, Cray-3

2/1/2006 43

Example: MIPS

Register-Register

31 26 25 2120 16 15 1110 6 5

Op Rsl Rs2 Rd Opx

Register-Immediate (e.g., load/store)

31 26 25 2120 16 15
Op Rs1 Rd immediate
Branch
31 26 25 2120 16 15
Op Rsl |Rs2/Opx immediate
Jump / Call
31 26 25

Op PC-region target address

2/1/2006

ISA Metrics

Orthogonality

— No special registers, few special cases, all operand modes available with
any data type or instruction type

e Completeness

— Support for a wide range of operations and target applications

* Regularity

— No overloading for the meanings of instruction fields

e Streamlined

— Resource needs easily determined
« Easeof compilation (or assembly language programming)

« Easeof implementation

Closer look at ISA Aspects

* Operand location
e Addressing modes

« Types of instructions

ISA Aspect (1): Operand Location

Accumulator (before 1960):

1 address add A acc «— acc + mem[A]

Stack (1960s to 1970s):

0 address add tos < tos + next

Memory-Memory (1970s to 1980s):

2 address add A, B mem[A] <« mem[A] + mem|[B]
3 address add A, B, C mem[A] <~ mem[B] + mem[C]
Register-Memory (1970s to present):
2 address add R1, A R1 < R1+ mem[A]
load R1, A R1 <~ mem[A]
Register-Register, also called Load/Store (1960s to present):
3 address add R1, R2, R3 R1 <« R2+R3
load R1, R2 R1 <« mem[R2]

store R1, R2 mem[R1] <~ R2

Choices for Operand Location

* Running example: C:= A + B

e Accumulator

load A accum = M[A];
add B accum += M[B];
store C M[C] = accum;

+ Less hardware, code density

— Memory bottleneck
e Stack
push A S[++tos] = M[A];
push B S[++tos] = M[B]
add tl= S[tos—--]; t2= S[tos—--]; S[++tos]= tl + t2;
pop C M[C] = S[tos—--];

+ Less hardware, code density

— Memory, pipelining bottlenecks

— x86 uses stack model for floating point computations
2/1/2006

48

Choices for Operand Location (cont’d)

* Running example: C:= A + B
* Memory-Memory
add C, A, B M[C] = M[A] + M[B];

+ Code density (most compact)
— Memory bottleneck
— No current machines support memory-memory (VAX did)

* Memory-Register

load R1, A R1 = MI[A];
add R1, B R1 += M[B];
store C, RI1 M[C] = R1;

+ Like several explicit (extended) accumulators

+ Code density, easy to decode
— Asymmetric operands, different amount of work per instruction

— Examples: IBM 360/370, x86, Motorola 68K

2/1/2006

Choices for Operand Location (cont’d)

* Running example: C:= A + B
* Register-Register (Load-Store)

load R1, A R1 = M[A];
load R2, B R2 = M[B];
add R3, R1, R2 R3 = R1 + R2;
store C, R3 M[C] = R3;

+ Easy decoding, operand symmetry

+ Deterministic cost for ALU operations (simple cost model)
+ Scheduling opportunities

— Code density

2/1/2006

50

Operand Location: Registers vs. Memory

* Pros and cons of registers

I
|
|

Faster, direct access

Simple cost model (fixed latency, no misses)

Short identifier

Must save/restore on procedure calls, context switches
Fixed size (larger-sized structures must live in memory)

e Pros and cons of more registers

+ Possible to keep more operands for longer in faster memory

2/1/2006

 Shorter operand access time, lower memory traffic
Longer specifiers
Larger cost for saving CPU state

Trend towards more registers
. 8 (x86) -> 32 (MIPS/Alpha/PPC) -> 128 (IA-64)

» Driven by increasing compiler involvement in scheduling

51

ISA Aspect (2): Addressing

« Endian-ness: Order of bytes in words
— Big: byte at lowest address has the most significance (big end)

 E.g., IBM, Sun SPARC 7161514 13[2]11]0
— Little: bytes at lower address have lower significance (little end)
. E.g.,x86 ol1[2]3]4]5]6]7

— Some processors allow mode to be selectable
* E.g., PowerPC, MIPS (new implementations of the ISA)

« Alignment: Natural boundaries defined by architecture
— Aligned address: (address % size) equals 0

« Different ISAs support different restrictions on alignment
— None (all alignments supported by hardware): expensive/exception handling
— Restricted: misaligned access traps to software

— Middle ground: misaligned data okay, but requires multiple instructions
« E.g., MIPS: 1wl/1wr (Load Word Left/Right: only modify part of register)

2/1/2006 52

Types of Addressing Modes (VAX)

Mode

Register direct
Immediate
Displacement
Register indirect
Indexed

Direct

Memory Indirect

Pl a0

Autoincrement

9. Autodecrement

10. Scaled

2/1/2006

add
add
add
add
add
add
add
add

add

add

Example

R4,
R4,
R4,
R4,
R4,
R4,
R4,
R4,

R4,

R4,

R3

@ (R3)
(R2) +

(R2) -

100 (R2) [R3]

Action

R4 «— R4 + R3

R4 « R4 + 3

R4 « R4 + M[100+R1]
R4 « R4 + M[R1]

R4 « R4 + M[R1 + R2]
R4 — R4 + M[1000]
R4 « R4 + M[M[R3]]
R4 « R4 + M[R2]

R2 « R2 + d

R4 « R4 + M[R2]

R2 « R2 - d

R4 — R4 +

M[100 + R2 + R3*d]

53

Which modes are actually used?

* Study by Clark and Emer
— Modes 1-4 account for 93% of all VAX operands

« Register mode responsible for roughly half
* Memory modes

Memory indirect
Scaled

Register indirect

43%
Immediate
39%

Displacement 55%

40%
0% 10% 20% 30% 40% 50% 60%
Frequency of the addressing mode

* An example of making the common case fast
— RISC machines typically implement register, immediate, and displacement

— Synthesize all other modes in software

2/1/2006 54

Addressing Modes for Signal Processing

Two additional modes, motivated by DSP applications

e Modulo or circular addressing
— DSPs deal with large (infinite, continuous) streams of data
— Typically encoded as a circular buffer (mode allows auto-reset)
— Keeps start and end registers with each address register

— Allows autoincrement/autodecrement modes to reset the address

* Bit reverse addressing

— Permit permutations on address (to support kernels such as FFT)
— E.g., address/displ. (100) results in access to address/displ. (001)

« Used in assembly implementations of some libraries

* Renewed importance of autoincrement and autodecrement modes
— Study on TT TMS320C54x DSP finds autoincrement mode use of ~18.8%

2/1/2006 55

ISA Aspect (3): Types of Operations

* Arithmetic and Logic: AND, ADD

« Data Transfer: MOVE, LOAD, STORE
« Control BRANCH, JUMP, CALL
e System OS CALL, VM

e Floating Point ADDF, MULF, DIVF
 Decimal ADDD, CONVERT

e String MOVE, COMPARE

* Graphics (DE)COMPRESS

Relative Frequency of Instructions

« For the 80x86, averaged over five SPECint92 programs

Rank I nstruction Freguency
1 load 22%
2 branch 20%
3 compare 16%
4 store 12%
5 add 8%
6 and 6%
7 sub 5%
8 register move 4%
9 call 1%
10 return 1%

Total 96%

« Simple instructions dominate

2/1/2006

57

Operations for Media and Signal Processing

« Results of media processing gauged in terms of human perception
— Narrow data items (8-16 bits) as opposed to 32 or 64-bit words
— Lower precision requirements
— Real-time requirements — cannot cause overflow traps

« Several ISAs have been extended to support graphics and multimedia
— Intel: MMX, Streaming SIMD Extensions (SSE, SSE2, and SSE3)
— AMD: 3DNow!
— Sun: Visual Instruction Set (VIS)
— Motorola and IBM: AltiVec

 Common theme
— Partitioned operations (SIMD), pack/unpack operations
— Saturating arithmetic
— Multiply-accumulate (MAC) instructions (dot products and vector multiplies)

2/1/2006 58

MMX

« Packed data types
— Packed byte | |

— Packed word | | | | |

| |

| |

— Double word

— Quad word

— Stored in 64-bit FP registers
+ MMX does not add any new state to the processor
— MMX and FP don’t work well together

— SIMD instructions work on the packed types (single cycle)

— Minimal hardware to isolate sub-operations (5% increase in chip area)
— E.g., PADD[W]

2/1/2006

a3 a2 al a0
b3 b2 bl b0
a3 +b3 | a2+b2 | al+bl|ald+Db0

59

MMX (cont’d)

 Saturating arithmetic
— Both wrap-around and saturating adds are supported
— Saturating mode: results that overflow are set to the largest value

a3 a2 al FFFF a3 a2 al FFFF

b3 b2 bl 8000 b3 b2 bl 8000
a3+b3 | a2+b2|al +bl| 7FFF a3 +b3 | a2+b2|al+bl| FFFF
PADD [W] : Packed wrap-around add PADDUS [W] : Packed saturating add

* Multiply-accumulate (MAC) operations
— E.g., PMADDWD: Packed multiply-add word to double

a3 a2 al a0
b3 b2 bl b0

a3*b3 + a2*b2 al*bl +a0*b0

2/1/2006 60

MMX: Example

— 9 MMX instructions (as compared to 40 without MMX)

x=> a(i)xh(i)

PMADDWD

(2)

copy and shift
4)
PADDD
(2)
PADDD

(D

2/1/2006

Vector dot product on an 8-element vector

a3 a2 al a0
b3 b2 bl b0
a3*b3 + a2*b2 al*bl + a0*b0

a7l ab as a4

b7 b6 b5 b4
a7*b7 + a6*b6 aS*b5 + a4*b4
a7*b7 + a6*b6

»
|

a3*b3 +a2*b2

a7*b7 +...+ ad4*b4

a3*b3 +...+a0*b0

a7*b7 +...+ a4*b4

a7*b7 +...+a0*b0

61

Performance Impact of MM X

« Pentium processors (200 MHz, 512 KB L2) with and without MM X
(“MMX Technology Architecture Overview” — Mittal, Peleg, Weiser
Intel Technology Journal, 3Q 1997)

Application Without With MMX | Speedup
MMX
Video 155.52 268.70 1.72
Image Processing | 159.03 743.90 4.67
3D geometry 161.52 166.44 1.03
Audio 149.80 318.90 2.13
Overall 156.00 255.43 1.64

* More recent Intel processors (Pentium III and 4) incorporate additional
instructions: Streaming SIMD Extensions (SSE, SSE2, and SSE3)

— New 128-bit registers, data prefetching
— SIMD floating point operations
— Performance gain of 1.5 to 2.0 on video and 3D applications

2/1/2006 62

Control Instructions

 Instructions that change the value of the PC

» Three kinds of instructions
— (conditional) branches, (unconditional) jumps
— Function calls, function returns

— System calls, system returns

* Questions
— What kinds of conditions are supported? How are the conditions set?
— How i1s the target address specified?
— For function and system calls, how is the return address specified?

» Most recent processors use an implicit register
+ Simple scheme
— Software needs to save/restore register contents

— Which instructions save/restore CPU state?

2/1/2006

63

Control Instructions (1): Conditions

e Compare and branch
+ Single instruction branches

— Needs ALU stage for branch instructions as well; May be too much work
for pipelined execution

« Condition codes (e.g., zero, negative, overflow)
Condition code set by ALU operations
+ Sometimes set for free
— Part of the CPU state, needs to be saved and restored
— Constrains the ordering of instructions

“compare” 1nstruction can be used

« Recent processors (e.g., Alpha, IA-64) offer predicated instructions
— combine comparison, branch, and ALU operations
— more about these later in the course

2/1/2006

64

Control Instructions (2): Target Address

Four choices
PC-relative with immediate

+ Position independent, all info present for computing target
+ Short immediate sufficient (compact instructions)

— Target must be known statically

Uses: branches/jumps within function

Arbitrary immediate
Uses: function calls

Register
+ Short specifier, target can be dynamic
— Extra instruction to load register
Uses: indirect calls (e.g., DLLs, virtual functions), returns, switches

Vectored traps
+ Protection (hence, heavyweight)

Uses: system calls
2/1/2006 65

Control Instructions (3): Save and Restore State

* Only call (function and system) instructions need to save state
— Function calls: save registers
— System calls: save registers, flags, PC, PSW, ...

Two choices

« Software saving/restoring
— Calling convention distinguishes between caller- and callee-save registers

« Hardware saving/restoring
— Explicit instructions: VAX
— Implicit: SPARC register windows
» 32 registers: 8 input, 8 output, 8 local, 8 global

* On call: 8 output of caller become 8 input of callee

— local/output registers are new set (no need to save/restore)
+ No save/restore on shallow call graphs
— Makes advanced architectural techniques (e.g., register renaming) hard

2/1/2006 66

The RISC vs. CISC Debate

« Early 80s: Several projects challenged how processors were being built
— Berkeley RISC-I (Patterson), Stanford MIPS (Hennessy), IBM 801

— Contrasted their design, RISC (Reduced Instruction Set Computer) with
what began to be called CISC (Complex Instruction Set Computer)

e RISC argument
— CISC 1s too complex to ever be implemented well

* too many addressing modes, variable format instructions, many multi-cycle
operations, microcoding, hand-assembled programs

— RISC characterized by
» Single-cycle operation
* Hardwired control Motivated by quantitative
« Load/store organization studies of program behavior
* Fixed instruction format Focus on optimizing the common case

* Few modes

» Reliance on compiler optimization

2/1/2006 67

The Reality of RISC vs. CISC

« RISC does help compiler optimizations
— Load/store architecture supports register allocation

» Explicit choices of what values reside where in the memory hierarchy

— Simple instructions make instruction selection, optimization easier

 However, CISC does not have any fundamental implementation flaws

— Fixable with more transistors
* Good CISC pipeline can be constructed with modest increase in transistors

* Not an issue given Moore’s law

« Most commercially successful ISA 1s x86 (CISC)

— Current-day Pentium processors translate CISC instructions into
sequences of RISC micro-ops

 Internal microarchitecture is actually RISC

— Better substrate for implementing advanced architectural techniques

2/1/2006

68

Announcements

— Assignment 0 out today; suggested due date: By next class (Feb. 15)

2/1/2006

69

2/1/2006

Pipelining

[Hennessy/Patterson CA: AQA (3'd Edition): Chapter 2, Appendix A]

70

Computer Pipelines

« Computers execute billions of instructions, so instruction throughput 1s
what matters

Main idea behind pipelining
* Divide instruction execution across several stages
— each stage accesses only a subset of the CPU’s resources
« Example: Classic 5-stage RISC pipeline
IF — ID — EX— MEM — WB
« Simultaneously have different instructions in different stages
— Ideally, can issue a new instruction every cycle
— Cycle time determined by longest stage

« Pipelining only improves throughput, not latency
— Each instruction still needs to go through each stage

2/1/2006 71

Classic 5-Stage RISC Pipeline

* Some key properties of RISC architectures simplify implementation
— all instructions same length
— registers located in same place in instruction format

— memory operands only in loads or stores

« E.g., MIPS

Register-Register (R-type) ADD R1, R2, R3
31 26 25 21 20 16 15 1110 6 5 0
. Op rsl rs2 rd func

Register-Immediate (I-type) SUB R1, R2, #3
31 26 25 21 20 16 15 0

op rsl rd immediate

Jump / Call (J-type) JUMP end
31 26 25 0
Op PC-region target address

(jump, jump and link, trap and return from exception)
2/1/2006

72

Unpipelined Implementation of a RISC ISA

* Most MIPS instructions can be implemented in 5 cycles

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch : Addr. Calc Access : Back

Next PC >

| Next SEQ PC

WB Data :
2/1/2006 ' ' ' 73

Unpipelined Implementation (1) — Instruction Fetch

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch : Addr. Calc Access : Back

Next PC

v

| Next SEQ PC

Load instruction . WBData

Update program counter

2/1/2006 74

Unpipelined Implementation (2) — Instruction Decode

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch : Addr. Calc Access : Back
Next PC >
| Next SEQ PC —

. WB Data
: Fetch source registers

Sign extend immediate field

2/1/2006 75

Unpipelined Implementation (3) — Execute

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch : Addr. Calc Access : Back
Next PC >
>

. Next SEQ PC

LD/ST: Compu?te effective addresé
ALU operations

Branch target/condition evaluation
2/1/2006 76

Unpipelined Implementation (4) — Memory Access

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch : Addr. Calc Access : Back
Next PC I
| Next SEQ PC |-

LD/ST
Branch: Set PC value
2/1/2006 77

Unpipelined Implementation (4) — Write Back

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch : Addr. Calc Access : Back

Next PC R

| Next SEQ PC

Update regisster file
for LD, ALU ops
2/1/2006 78

CPI for the Multiple-Cycle RISC Implementation

* Branches and stores: 4 cycles (no WB), all other instructions: 5 cycles

— If 20% of the instructions are branches or loads
CPI=0.8*5+0.2*%4 =4.80
« ALU operations can be allowed to complete in 4 cycles (no MEM)

— If 40% of the instructions are ALU operations
CPI=0.4%5+0.6%4 =4.40

* Pipelining the implementation can help reduce the CPI

Clock Number
Instr. | 2 3 4 | [5\] 6 7 8 9
i IF | ID | EX | MEM |[WB
i+1 F | © | eEx |[mMEm|| wB
i+2 IF | 1 || EX || MEM | WB
i+3 iF (| D [| EX | MEM | wB
i+4 \trfF/| ™ | Ex | MEM | wB

2/1/2006

79

Pipelined Implementation of a RISC ISA

Instruction Instr. Decode Execute Memory
Fetch Reg. Fetch Addr. Calc Access
Next PC >
Next SEQPC >

3

RS1

RS2

2/1/2006

\ 4

Imm’_'
®

Zero?>

2t

>

RD .A

Write

Back

A

" WB Data

80

Pipelined Implementation of a RISC ISA (1):
Separation of Instruction and Data Memories

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch : Addr. Calc Access : Back

Next PC ’ ’ g

Next SEQ PC

Eliminates conflict

for a single memory : WB Data

2/1/2006 81

Pipelined Implementation of a RISC ISA (2):
Split-phase Register Access

Instruction Instr. Decode Execute Memory Write
Fetch Reg. Fetch : Addr. Calc Access : Back

Next PC ’ ’ g

Next SEQ PC >
— >
4 Zero?”

LA

”

PR A\
Reg1ster file accessed :
in two stages: Writes in first half

Reads in second half : ; ; WB Data

2/1/2006 82

Visualizing Pipelining

v

Time (clock cycles)

Cycle 1 Cycle 2 Cycle 3 Cycle 4 Cycle 5 Cycle 6 Cycle 7

Ifetch

Ifetch

Instr.
order

Ifetch

Ifetch

Ifetch

2/1/2006 83

Speedup from Pipelining

* Assume that a multiple cycle RISC implementation has a 10 ns clock
cycle, loads take 5 clock cycles and account for 40% of the
instructions, and all other instructions take 4 clock cycles.

« If pipelining the machine adds I ns to the clock cycle, how much
speedup 1n instruction execution rate do we get from pipelining?

MC Ave. Instr. Time = Clock cycle x Average CPI
=10nsx (0.6 x4+0.4x5)
=44 ns

PL Ave. Instr. Time =10+ 1=11ns

Speedup=44/11=4

e The above expression assumes a pipelining CPI of 1
Should we expect this in practice? Any complications?

2/1/2006 84

