
4/24/2006 4

PowerPC 750

[PowerPC 750 User’s Manual]

4/24/2006 5

General

• PowerPC 750 is an implementation of PowerPC microprocessor family
of reduced instruction set computer (RISC) microprocessors

• 750 implements the 32-bit portion of the PowerPC architecture
• Provides 32-bit effective addresses

– Integer data types of 8, 16, and 32 bits
– Floating-point data types of 32 and 64 bits

• High-performance, superscalar microprocessor
– As many as four instructions can be fetched from the instruction cache

per cycle
– As many as two instructions can be dispatched per clock
– As many as six instructions can execute per clock
– Six independent execution units and two register files

4/24/2006 6

PowerPC Instructions

• All PowerPC instructions are encoded as single-word (32-bit)
• Instruction formats are consistent among all instruction types, permitting efficient

decoding to occur in parallel with operand accesses.
• This fixed instruction length and consistent format greatly simplifies instruction

pipelining

• Integer instructions
– Integer arithmetic, compare, logical, rotate and shift instructions

• Floating-point instructions
– Floating-point arithmetic, multiply/add, rounding and conversion, compare, status and control

instructions
• Load/store instructions

– Integer load and store instructions and Floating-point load and store
– Primitives used to construct atomic memory operations (lwarx and stwcx. instructions)

• Flow control instructions
– branching, condition register logical, trap, and other instructions that affect the instruction flow

• Processor control instructions:
– These instructions are used for synchronizing memory accesses and management of caches,

TLBs, and the segment registers.
• Memory control instructions

– These instructions provide control of caches, TLBs, and SRs.

4/24/2006 7

PowerPC 750 Microprocessor Block Diagram

4/24/2006 8

PowerPC 750 Microprocessor Block Diagram

Instruction Cache (L1)

Data Cache (L1)

IF

DISPATCH

EXE

COM

Reservation
Stations

Registers &
Rename Buffer

L2 Cache
Interface

Branch
Processing

4/24/2006 9

Superscalar Pipeline

4/24/2006 10

Instruction Flow

4/24/2006 11

Fetch

• Clock cycles necessary to request instructions from the memory
system

• Where exactly:
1. the branch target instruction cache
2. the on-chip instruction L1 cache
3. the L2 cache

4/24/2006 12

Decode/Dispatch

• The time it takes to fully decode the instruction and dispatch it from
the instruction queue to the appropriate execution unit

• Instruction dispatch requires the following:
– Instructions can be dispatched only from the two lowest instruction queue

entries, IQ0 and IQ1.
– A maximum of two instructions can be dispatched per clock cycle

(although an additional branch instruction can be handled by the BPU)
– Only one instruction can be dispatched to each execution unit per clock

cycle
– There must be a vacancy in the specified execution unit.
– A rename register must be available for each destination operand specified

by the instruction
– For an instruction to dispatch, the appropriate execution unit must be

available
– There must be an open position in the completion queue. If no entry is

available, the instruction remains in the IQ.

4/24/2006 13

Execution Units

• Two integer units (IUs) that share thirty-two GPRs for integer
operands

– IU1 can execute any integer instruction
– IU2 can execute all integer instructions except multiply and divide
– Single-entry reservation station for each

• One three-stage floating point unit (FPU)
– both single- and double-precision operations
– Hardware support for denormalized numbers
– Single-entry reservation station
– Thirty-two 64-bit FPRs for single- or double-precision operands

4/24/2006 14

Execution Units (Cont’d)

• Two-stage LSU
– Two-entry reservation station
– Single-cycle, pipelined cache access
– Dedicated adder performs EA calculations
– Performs alignment and precision conversion for floating-point data
– Performs alignment and sign extension for integer data
– Three-entry store queue
– Supports both big- and little-endian modes

• SRU handles miscellaneous instructions
– Executes CR logical and Move to/from SPR instructions (mtspr and mfspr)
– Single-entry reservation station

4/24/2006 15

Completion

• Completion unit retires an instruction from the six-entry reorder buffer
(completion queue) when
1. All instructions ahead of it have been completed, and
2. The instruction has finished execution, and
3. No exceptions are pending

• Guarantees sequential programming model (precise exception model)
• Monitors all dispatched instructions and retires them in order
• Tracks unresolved branches and flushes instructions from the

mispredicted branch
• Retires as many as two instructions per clock

4/24/2006 16

Pipeline Stages

4/24/2006 17

Rename Buffers

• 750 provides rename registers for holding instruction results before the
completion commits them to the architected register

• There are six GPR rename registers, six FPR rename registers, and one
each for the CR, LR, and CTR

• When an instruction is dispatched to its execution unit, a rename
register for the results of that instruction is assigned

• Dispatcher also provides a tag to the execution unit identifying the
rename register that forwards the required data for an instruction

• When the source data reaches the rename register, execution can begin
• Results are transferred from the rename registers to the architected

registers by the completion unit when an instruction is retired from
completion queue

• Results of squashed instructions are flushed from the rename registers

4/24/2006 18

Branch Prediction Unit

• Featuring both static and dynamic branch predictions
– Only one is used at any given time

• Static branch prediction
– Static branch prediction is defined by the PowerPC architecture and

involves encoding the branch instructions
– The PowerPC architecture provides a field in branch instructions (the BO

field) to allow software to hint whether a branch is likely to be taken
– Rather than delaying instruction processing until the condition is known,

the 750 uses the instruction encoding to predict whether the branch is
likely to be taken and begins fetching and executing along that path

• Dynamic branch prediction: Branch history table (BHT)
– 512-entry with two bits per entry
– Not-taken, strongly not-taken, taken, strongly taken

4/24/2006 19

Branch Target Cache

• Used to reduce time required for fetching target instructions when
branch is predicted to be taken

• Branch Target Instruction Cache (BTIC)
– 64-entry (16-set, four-way set-associative)
– Cache of branch instructions that have been encountered in branch/loop

code sequences
– BTIC hit: instructions are fetched into the instruction queue a cycle

sooner than it can be made available from the instruction cache
– Typically, provides the first two instructions in the target stream

4/24/2006 20

Multiple Branch Predictions

• The 750 executes through two levels of prediction
• Instructions from the first unresolved branch can execute,

but they cannot complete until the branch is resolved.
• If a second branch instruction is encountered in the

predicted instruction stream, it can be predicted
• Instructions can be fetched, but not executed, from the

second branch
• No action can be taken for a third branch instruction until

at least one of the two previous branch instructions is
resolved

4/24/2006 21

Cache

• Separate on-chip instruction and data caches
– 32-Kbyte, eight-way set-associative instruction
– Pseudo least-recently-used (PLRU) replacement
– 32-byte (eight-word) cache block
– Physically indexed/physical tags
– Cache write-back or write-through operation per-block basis
– Caches can be disabled in software
– Caches can be locked in software
– Data cache coherency (MEI) maintained in hardware
– The critical double word is made available to the requesting unit
– The cache is non-blocking

4/24/2006 22

Data and Instruction Cache Organization

32-word blocks (5 bits)
128 sets (7 bits)
Tags (20 bits)
State: MEI

32-word blocks (5 bits)
128 sets (7 bits)
Tags (20 bits)
Valid/Not valid
Not snooped

4/24/2006 23

Multiprocessing

• Multiprocessing support features include the following:
– Hardware-enforced, three-state cache coherency protocol (MEI) for data

cache.
– Load/store with reservation instruction pair for atomic memory references,

semaphores, and other multiprocessor operations
• The 750’s three-state cache-coherency protocol (MEI) supports the

Modified, Exclusive, and Invalid states
• A compatible subset of the MESI (modified/exclusive/shared/invalid)

four-state protocol, and it operates coherently in systems with four-
state caches

4/24/2006 24

MEI Protocol

/CIR

• Three states:
- Invalid
- Modified
- Exclusive

• No shared state
• Caching-Inhibited Reads

4/24/2006 25

PowerPC 970FX

[PowerPC 970FX User’s Manual]

4/24/2006 26

PowerPC 970FX Block Diagram

4/24/2006 27

PowerPC 970FX

• 64-bit implementation of the PowerPC® AS Architecture (version
2.01)

• Vector/SIMD Multimedia eXtension
• Deeply pipelined design

– 16 stages for most fixed-point register-register operations
– 18 stages for most load and store operations (assuming an L1 D-cache hit)
– Up to 25 stages for floating point operations
– the VALU.
– 19 stages for vector permute operations

• Dynamic instruction cracking
– Some complex instructions are broken into two simpler, more RISC-like

instructions!
– Allows for simpler inner core dataflow

4/24/2006 28

General

• Aggressive branch prediction
– Prediction for up to two branches per cycle
– Support for up to 16 predicted branches in flight
– Prediction support for branch direction and branch addresses

• In-order dispatch of up to five operations into distributed issue queue structure
• Out-of-order issue of up to 10 operations into 10 execution pipelines

– Two load or store operations
– Two fixed-point register-register operations
– Two floating-point operations
– One branch operation
– One condition register operation
– One vector permute operation
– One vector ALU operation

• Register renaming

• Cache coherency protocol: MERSI (modified/exclusive/recent/shared/invalid)

4/24/2006 29

General (Cont’d)

• Large number of instructions in flight (theoretical maximum of 215
instructions)

• Up to 16 instructions in the instruction fetch unit (fetch buffer and overflow
buffer)

• Up to 32 instructions in the instruction fetch buffer in instruction decode unit
• Up to 35 instructions in three decode pipe stages and four dispatch buffers
• Up to 100 instructions in the inner-core (after dispatch)
• Up to 32 stores queued in the store queue (STQ) (available for forwarding)
• Fast, selective flush of incorrect speculative instructions and results
• Specific focus on storage latency management
• Out-of-order and speculative issue of load operations
• Support for up to eight outstanding L1 cache line misses
• Hardware initiated instruction prefetching from L2 cache
• Software initiated data stream prefetching with support for up to eight active

streams
• Critical word forwarding / critical sector first
• New branch processing / prediction hints for branch instructions

4/24/2006 30

Instruction Fetch

• 64KB, direct-mapped instruction cache (I-cache)
– 128-byte lines (broken into four 32-byte sectors)
– Dedicated 32-byte read/write interface from L2 cache – critical sector first

reload policy
• Four-entry, 128-byte, instruction prefetch queue above the I-cache;

hardware-initiated prefetches
• Fetch 32-byte aligned block of eight instructions per cycle

4/24/2006 31

Branch Prediction

• Scan all eight fetched instructions for branches each cycle
• Predict up to two branches per cycle
• Three-table prediction structure

– Local (16K entries, 1-bit each); Taken/Not taken
– Global (16K entries, 1-bit each) 11-bit history XORed with branch instruction

address; Taken/ Not taken
– Selector (16K entries, 1-bit each) indexed as above; Use local predictor/Use global

predictor
• This combination of branch prediction tables has been shown to produce very

accurate predictions on a wide range of workload types.

• 16-entry link stack for address prediction (with stack recovery)
– predict the target address for a branch to link instruction that it believes

corresponds to a subroutine return (pushed into the stack earlier)

• 32-entry count cache for address prediction (indexed by the address of Branch
Conditional to Count Register (bcctr) instructions)

4/24/2006 32

Instruction Decode and Preprocessing

• Three cycle pipeline to decode and preprocess instructions
– Cracking one instruction into two internal operations

• Cracked and microcoded instructions have access to four renamed
emulation GPRs (eGPRs), one renamed emulation FPR (eFPR), and
one renamed emulation CR (eCR) field (in addition to architected
facilities)

• 8-entry (16 bytes per entry) instruction fetch buffer (up to eight
instructions in, five instructions out each cycle)

4/24/2006 33

Instruction Dispatch and Completion Control

• Four dispatch buffers which can hold up to four dispatch groups when
the global completion table (GCT) is full

• 20-entry global completion table
– Group-oriented tracking associates a five operation dispatch group with a

single GCT entry
– Tracks internal operations from dispatch to completion for up to 100

operations
– Capable of restoring the machine state for any of the instructions in flight
– Very fast restoration for instructions on group boundaries (i.e., branches)
– Slower for instructions contained within a group

• Supports precise exceptions

4/24/2006 34

Branch and Condition Register Execution Pipelines

• One branch execution pipeline
– Computes actual branch address and branch direction for comparison with

prediction
– Redirects instruction fetching if either prediction was incorrect
– Assists in training/maintaining the branch table predictors, the link stack,

and the count cache
• One condition register logical pipeline

– Executes CR logical instructions and the CR movement operations
– Executes some Move to/from Special Purpose Register (mtspr and

mfspr) instructions also
• Out-of-order issue with bias towards oldest operations first

4/24/2006 35

Data Stream Prefetch

• Eight (modeable) data prefetch streams supported in hardware. Eight
hardware streams are only available if vector prefetch instructions are
disabled

• Four vector prefetch streams supported using four of the eight
hardware streams. The vector prefetch mapping algorithm supports the
most commonly used forms of vector prefetch instructions

4/24/2006 36

Intel P6

[P6 Family of Processors Hardware Developer’s Manuals]

4/24/2006 37

General

• The P6 family of processors is the generation of processors that
succeeds the Pentium® line of Intel processors

• This processor family implements Intel’s dynamic execution
microarchitecture

– Multiple branch prediction
– Data flow analysis
– Speculative execution

4/24/2006 38

P6 Three Engines and Interface with Memory

4/24/2006 39

Major Units

• The FETCH/DECODE unit:
– An in-order unit that takes as input the user program instruction stream

from the instruction cache, and decodes them into a series of μoperations
(μops) that represent the dataflow of that instruction stream. The pre-fetch
is speculative

• The DISPATCH/EXECUTE unit:
– An out-of-order unit that accepts the dataflow stream, schedules execution

of the μops subject to data dependencies and resource availability and
temporarily stores the results of these speculative executions

• The RETIRE unit:
– An in-order unit that knows how and when to commit (“retire”) the

temporary, speculative results to permanent architectural state
• The BUS INTERFACE unit:

– The bus interface unit communicates directly with the L2 (second level)
cache supporting up to four concurrent cache accesses. The bus interface
unit also controls a transaction bus, with MESI snooping protocol, to
system memory

4/24/2006 40

Inside Fetch

• The L1 Instruction Cache fetches the cache line
corresponding to the index from the Next_IP and
presents 16 aligned bytes to the decoder.

• The decoder converts the Intel Architecture
instructions into triadic μops (two logical sources,
one logical destination per μop)

• Most Intel Architecture instructions are converted
directly into single μops, some instructions are
decoded into one-to-four μops and the complex
instructions require microcode

• The μops are queued, and sent to the Register Alias
Table (RAT) unit, where the logical Intel
Architecture-based register references are converted
into references to physical registers in P6 family
processors physical register references

• μopa are entered into the instruction pool
• The instruction pool is implemented as an array of

Content Addressable Memory called the ReOrder
Buffer (ROB).

4/24/2006 41

Inside Dispatch/Execute

• The Dispatch unit selects μops
from the instruction pool
depending upon their status

• If the status indicates that a μop has
all of its operands then the dispatch
unit checks to see if the execution
resource needed by that μop is also
available

• If both are true, the Reservation
Station removes that μop and sends
it to the resource where it is
executed

• The results of the μop are later
returned to the pool

• There are five ports on the
Reservation Station, and the
multiple resources are accessed as
shown

4/24/2006 42

Inside Dispatch/Execute (Cont’d)

• The P6 family of processors can schedule (in an out-of-order fashion)
at a peak rate of 5 μops per clock, one to each resource port, but a
sustained rate of 3 μops per clock is more typical

• Note that many of the μops are branches
• The Branch Target Buffer (BTB) will correctly predict most of these

branches
• Branch μops are tagged (in the in-order pipeline) with their fall-

through address and the destination that was predicted for them
• But if mispredicted, then the Jump Execution Unit (JEU) changes the

status of all of the μops behind the branch to remove them from the
instruction pool

• In that case the proper branch destination is provided to the BTB
which restarts the whole pipeline from the new target address

4/24/2006 43

Inside Retire

• The Retire Unit is also checking the status of μops in the instruction pool
• Once removed, the original architectural target of the μops is written as per the

original Intel Architecture instruction.
• The Retire Unit must also re-impose the original program order on them
• The Retire Unit must first read the instruction pool to find the potential

candidates for retirement and determine which of these candidates are next in
the original program order

• Then it writes the results of this cycle’s retirements to the Retirement Register
File (RRF). The Retire Unit is capable of retiring 3 μops per clock.

4/24/2006 44

Bus Interface Unit

• Loads are encoded into a single μop.
• Stores therefore require two μops, one to generate the address and one to

generate the data. These μops must later re-combine for the store to complete.
• Stores are never performed speculatively since there is no transparent way to

undo them
• Stores are also never re-ordered among themselves
• A store is dispatched only when both the address and the data are available and

there are no older stores awaiting dispatch.

4/24/2006 45

Bus Interface Unit (Cont’d)

• A study of the importance of memory access reordering concluded:
– Stores must be constrained from passing other stores, for only a small

impact on performance.
– Stores can be constrained from passing loads, for an inconsequential

performance loss.
– Constraining loads from passing other loads or stores has a significant

impact on performance.
• The Memory Order Buffer (MOB) allows loads to pass other loads and

stores by acting like a reservation station and re-order buffer
• It holds suspended loads and stores and re-dispatches them when a

blocking condition (dependency or resource) disappears

4/24/2006 46

Intel Itanium

[Intel Itanium Processor Hardware Developer’s Manuals and
64-Bit CPUs: What You Need to Know,

extremetech.com]

4/24/2006 47

General

• First Implementation of Itanium Instruction Set
• EPIC: Explicitly Parallel Instruction Computing
• 6-wide 10-stage deep pipeline
• 4 inter units
• 4 multimedia units
• 2 load/store units
• 3 branch units
• 4 floating point units
• Can fetch, issue, execute, and retire 6 instructions per cycle

4/24/2006 48

Itanium basic Block Diagram

4/24/2006 49

Itanium Block Diagram

4/24/2006 50

Itanium Pipeline

4/24/2006 51

Pipeline Stages

• Front end (3 stages):
– Pre-fetch and Fetch
– Hierarchy of branch predictors
– Decoupling Buffer

• Backend (7 stages):
– Instruction delivery (2 stages)

• 6 instructions into 9
• Register remapping
• Register Save Engine

– Operand Delivery (2 stages)
• Register file read and bypass
• Register Scoreboard
• Predicated dependencies

– Execute (3 stages)
• Execute and retire

4/24/2006 52

Registers

• The Itanium processor has a massive register set
– 128 general-purpose integer registers (each 64 bits wide)
– 128 floating-point registers (each 82 bits wide)
– 64 1-bit predicate registers
– 8 branch registers, and a whole bunch of other registers

• Pushing and popping 128 registers for subroutine calls is very time-
consuming (and usually not necessary anyway)

• IA-64 gets around the constant pushing and popping by using register
frames

• The first 32 of the 128 integer registers are global, available to all tasks
at all times. The other 96, though, can be framed, rotated, or both

4/24/2006 53

Instructions, Bundles, and Groups

• Instructions are 41 bits long!
– 7 bits to specify one of 128 general-purpose (or floating-point) registers; two

source-operand fields and a destination field eat up 21 bits
– Another 6 bits specify the 64 combinations of predication

• Instructions are delivered to the processor in "bundles”
– Bundles are 128 bits: three 41-bit instructions (making 123 bits), plus one 5-bit

template
• Instruction groups: collections of instructions that can theoretically all execute

all at once.
– It's the responsibility of the compiler to get this right
– Groups can be of any arbitrary length, from one instruction up to millions of

instructions that can all run at once without interfering with each other. A bit in the
template identifies the end of a group

– Processors will do their best to dispatch all the instructions in a group at once
• A bundle is not a group

• All IA-64 instructions fall into one of four categories
– integer, load/store, floating-point, and branch operations

4/24/2006 54

Predicated Instructions

• Almost all IA-64 instructions can be conditional
– Predicated on literally anything
– Beyond simple Z (zero), V (overflow), S (sign), and N (negative) flags
– Has 64 free-form predicate bits, each considered a separate predicate

register
– You can set or clear a predicate bit any way you like, and its condition

sticks indefinitely
– Any subsequent instruction anywhere in the program can check that bit (or

multiple bits) and behave accordingly

