
Notes on inductive logic programming methods innatural language processing (European work)James CussensUniversity of YorkSeptember 21, 19981 IntroductionThe aim of these notes is to analyse ILP methods which have been applied toNLP, drawing exclusively on work conducted in Europe. The paper is organisedthematically, examining how the following are treated in existing work:1. Representation2. Using expert knowledge3. Hybrid approaches4. Recursion5. Large data setsAs a consequence of examining particular themes we examine a number ofpieces of work. Appropriately it is in Section 2 on representation, where the bulkof the description of the various pieces of research is to be found. The interestedreader should read the cited papers for the full story. Email addresses for allresearchers are also given at the end.This document arose from notes made in preparation for a tutorial on Eu-ropean ILP work on NLP given at the ILP tutorial day which took place imme-diately before ILP'98 in Madison, Wisconsin, USA. It does not cover Americanwork in this area|this was handled by Ray Mooney at the tutorial day. (Goto http://www.cs.utexas.edu/users/ml/ to �nd a number of ILP+NLP pa-pers from Mooney's group.) Also it is narrowly focussed on ILP, and does notattempt a discussion of related work involving logic and/or machine learning inan NLP context.
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2 RepresentationAttribute-value ML approaches rest on the assumption that items of data canbe adequately represented by �xed-length vectors of attribute vectors. Conse-quently, ILP is well-motivated where data can not, or can not easily, be repre-sented as such. This is often the case in NLP.2.1 Conceptual clusteringIn [8], one goal is to cluster words into concepts and so to form an ontologyof a domain. ASIUM, the tool used, begins by clustering words into \basicclasses" to give a �rst level of clusters. ASIUM continues by building secondlevel clusters from these, then third level clusters from the second level andso on. The �nal output is an acyclic directed graph (not necessarily a tree)representing a generality hierarchy between concepts.Non-ILP clustering algorithms such as COBWEB or AUTOCLASS wererejected: Attributes of the input vector would be head words and values,their frequencies. As attributes would need to be the same in allvectors, very large vectors representing a whole dictionary would berequired (about 2000 words in our experimentation) and most oftheir values would be equal to zero.Here we see the \exploding attribute space phenomenon" which occurs whenunsuitable data is crow-barred into attribute value form.Instead, Faure and N�edellec use instantiated subcategorization frames as in-put to ASIUM. These have the general form:<verb> <preposition | syntactical role: head word>*and here are a couple of examples (produced originally from the clauses \Myfather travels by car" and \His neighbour travels by car"):<to travel> <subject: father> <by: car><to travel> <subject: neighbour> <by: car>ASIUMS's �rst step is to create a synthetic frame for each verb. For example, ifthe two examples above were our total training data, we would get this syntheticframe:<to travel> <subject: [father(1), train(1)]> <by: [car(2)]>Clearly, both instantiated subcategorization frames and synthetic frames areessentially terms, and could be represented, respectively, in Prolog like this:travel([subject(father),by(car)])travel([subject([father(1),neighbour(1)]),by([car(2)])]2



2.2 Transfer rule learningIn [2] the goal is learn transfer rules which translate, for example, English quasi-logical forms (QLFs) to French or Swedish QLFs and vice-versa. QLFs are se-mantic representations of sentences or phrases which are represented as complexProlog terms. As Bostr�om and Zemke point out, transfer rule learning is a par-ticular case of term rewriting. Here are two examples of transfer rules betweenEnglish and Swedish QLFs:trans(flight_AirplaneTrip,flygning_Flygresa).trans([and,X1,form(_,verb(no,A,yes,M,D),V,Y1,_)],[and,X2,[island,form(_,verb(pres,A,no,M,D),V,Y2,_)]]) :-trans(X1,X2),trans(Y1,Y2).In this application a logic-based representation seems inescapable since QLFsthemselves are of this form. However, in [13] Milward and Pulman examine\
attening" QLFs into \Minimal Recursion Structures" the better to get atsubterms buried deep within the QLF. The basic idea is to replace one complexterm with a list of subterms which are indexed to encode the original structure.For example f(g(a)) would become [0 : f(1); 1 : g(2); 2 : a]. This 
atter repre-sentation is super�cially closer to an attribute-value representation but is notthat close since (i) there is not a �xed number of attributes (hence a list) and(ii) the value of one `attribute' can include the name of another.2.3 TaggingTagging involves classifying individual words. In part-of-speech tagging wordsare tagged with their part-of-speech such as \singular common noun" or \3rdperson present tense verb". More complex tags are also used. For example, in[11], Eineborg and Lindberg use (a pre-release of) the Stockholm-Ume�a Corpus(SUC) where words are tagged with part-of-speech and a set of morphologicalfeatures.Tagging is non-trivial, since many words are ambiguous. For example, \ta-ble" can be a noun or a verb, although the latter reading is rare. To overcomeambiguity taggers use the context surrounding the focus word to tag it correctly.Here we examine two ways of representing context in ILP approaches to learningtaggers from pre-tagged data.2.3.1 Using a grammarIn [3, 4], the left and right contexts are represented as two lists of tags, wherethe list for the left context has the order of the tags reversed, so that the head ofthe list is the tag of the word immediately to the left of the focus word. Usinglists instead of attribute-value vectors is more natural since contexts are notof a �xed length. The approach taken in [3, 4] rests on the assumption that,3



in many cases, the contexts, as represented by tags, are su�cient to determinethat some potential tag for the focus word is in fact not the correct one. Takingeach tag in turn, the ILP system Progol was used to �nd those contexts whichallowed elimination of the tag. Contexts were characterised using a (very!)rough hand-crafted grammar. For example, adjectival phrase was de�ned asfollows:adj([jj|S],S) :- !.adj([jjr|S],S) :- !.adj([jjs|S],S).adjp_rest([cma|L4],L2) :- !, adjp(L4,L2).adjp_rest([cc|L4],L2) :- !, adjp(L4,L2).adjp_rest(L3,L2) :- adjp(L3,L2).adjp(L1,L2) :- adj(L1,X), !, (X=L2 ; adjp_rest(X,L2)).adjp(L1,L2) :- advp(L1,L3), adjp(L3,L2).jj, jjr and jjs are the tags for normal, comparative and superlative adjec-tives. So, for example, any sequence of adjective-tagged words with, optionally,commas or conjunctions between them, counts as an adjectival phrase. Suchpredicates were used to de�ne elimination rules. For example, the followingstates that a word can not be tagged as a conjunction (cc) if it is followed bya noun, which is followed by a verb phrase which is followed by an adjectivalphrase, where verb phrase and adjectival phrase are de�ned in the backgroundgrammar.rmv(A,B,cc) :- noun(B,C), vp(C,D), adjp(D,E).Returning to the issue of representation we �nd that the combination ofrecursive data structures (the lists), intensional de�nitions and variable chainsmakes it:1. easy for the user to de�ne those features (tag sequences) which he/shejudges likely to be relevant2. easy for the tool (here Progol) to bolt these features together to form rulebodiesAn advantage of representing, say, adjectival phrases intensionally is thattheir presence is checked for `on the 
y'. Essentially we are doing `lazy featureconstruction'. Features, de�ned by connected literals, are only constructed at aparticular point in the search if they might be useful in discriminating betweenpositive and negatives. In the vast majority of cases Progol never examinestags far away from the focus word even if the declarative bias allows it. Arelevance ordering which focuses on tags near the focus word drops out as anatural consequence of Progol's top-down search. A Progol-speci�c disadvan-tage is that, unless some sort of caching is done, considerable re-computationand reconstruction of features may be done4



2.3.2 Pulling out featuresIn [7, 11], Lindberg and Eineborg also learn tag elimination rules using Progol.Their approach di�ers from that of Cussens in that1. words, as well as tags, are represented in the context2. no grammar is used3. the context is restricted to a window of length 54. the tags include morphological features as well as parts-of-speech; thesefeatures are used for eliminating tagsHere is an example of an induced rule:remove(vb,A) :-context(A,left_target(word(att),featlist([imp,akt]))).which says that focus (target) words can not have verb (vb) tags if they havethe imp (imperative) and akt (active voice) features and the word to the left is\att". So instead of partially parsing the contexts, Lindberg and Eineborg usea �xed number of function symbols such as left/1 and right right/2 whichthe single background predicate context/2 uses to access and examine taggedwords in the context. Each clause thus has only a single body literal at theexpense of a complex term inside that literal.2.3.3 Using a databaseIn [5] the pre-tagged Wall Street Journal corpus is represented by a single rela-tion in an Oracle7TM database. Each record has the following �elds1. Sentence ID { natural number2. Word ID { natural number3. Word { string4. Tag { stringso the record (77; 1; champagne; nn) represents that the �rst word in the 77thsentence is \champagne" and is tagged as \nn" (singular common noun).Given the size of NL corpora and the close relations between logic program-ming and relational databases the use of database technology is well motivated.Similarly to Cussens, an elementary grammar was used as background knowl-edge to build constituents over tag sequences. The WARMR algorithm was usedto �nd all 783 constituents sequences that occur at least 500 times in a 100000word corpus|this took �ve days. For example, the sequencenp(WID,B), vp(B,C), np(C,D), prep(D,E), np(E,F)5



was found 644 times. These constituents were constructed with a view to latertreating them as binary features in a non-ILP approach to inducing a tagger.From a representational point-of-view it is interesting that, due to the use ofthe database, lists have been rejected in favour of indexing sentences and words.On the plus side this allows the use of the database, on the minus side the sizeof the data is increased.2.4 MorphologyILP approaches to learning morphology can be found in [6, 12, 9]. In all of these,words are represented as lists of letters and a single list-processing predicate isused to perform morphological analysis.In [6], in
ectional paradigms of Slovene nouns are learned. From examplessuch as:nxmsg([t,e,s,l,a],[t,e,s,l,e]).rules such as:nxsmg(A,B) :- split(A,C,[a]), split(B,C,[e]).are learned where split(A,B,C) splits A into two non-empty lists B and C.nxsmg/2 takes a base form (\lemma") as input and produces (\synthesises")the masculine genitive form as output. \Analysis" rules which produce thelemma from the masculine genitive form were also induced. Rules were learnedfor a large number of forms, not just masculine genitive. The work in [12] has asimilar representation design except the single predicate mate/6 is used wheremate(W1,W2,P1,P2,S1,S2) is true if P1 and S1 is a pre�x and su�x of W1 andsimilarly for P2, 21 and W2. Similarly in [9], the single background predicateappend/3 is used to learn segmentation rules such asseg(A,B) :-append([�e,b,l,o,u,i,s,s],B,A),append(C,[o,n,s],A),!.from examples such as:seg([�e,b,l,o,u,i,s,s,o,n,s],[o,n,s]).The representational features here are the use of lists and list processing insteadof �xed-length vectors and the appropriately highly limited use of backgroundknowledge.2.5 Learning phonetic rulesIn [1], vowel recognition rules are learned from features of local maxima of thespectral decomposition of the wave signals produced by a speaker. The localmaxima are found using a GA and then used as input to the IMPUT ILPalgorithm. 6



Each local maximum is represented by a 6-tuple: size, frequency, frequency
uctuation, left angle, right angle, intensity. The `angles' measure the left andright steepness of the `hill' leading up to the maxima. Each vowel sound couldthen be represented by a list of these tuples representing the sequence of maximaproduced. Here is an example:sound([(fulllength,125,veryveryshort,85,110,loud),(fulllength,2350,veryshort,75,110,noise),(fulllength,3550,wide,75,120,noise)]).For a given vowel, samples of that vowel were used as positive examples andall of the other samples were used as negatives. The IMPUT system was thenused to re�ne an initially over-general program. IMPUT uses unfolding andclause removal to re�ne an overly general program. An interactive debuggeris used to �nd the best place for unfolding. Here we see a mixture of �xed-length and non-�xed-length representation: the local maxima are representedby 6 features, the sounds are represented by a list of local maxima.2.6 The Logic, Language and Learning (LLL) challengeThe LLL challenge [10] is a learning problem set up by the ongoing ILP2project with assistance from SRI International. Competitors are given partof a uni�cation grammar and lexicon developed during the FraCaS project(see http://www/cogsci.ed.ac.uk/~fracas/deliverables.html for details).They are also given examples of a predicate parse/2 which maps input sen-tences to the QLFs produced from the complete grammar. The task is to �ndthe missing grammar rules and lexical items.Here is the lexical entry for \need" which expresses syntactic and semanticinformation for that word in a form which allows e�cient parsing rather thanhuman comprehensibility:cmp_synword(need, v(f(0,0,1,1,1,1,1,1,1),sem(need(A,B,C),A,B,C,_,pos),n,n,[np(_,_,_,f(0,_,1,1),nonsubj)])).Grammar rules are also unit clauses of the form: cmp_synrule(RuleID,LHS,RHS).Again we see the use of complex terms to represent linguistic information. Noresults from this data are currently available since it has only just been released.2.7 Summary of representational issuesWith the exception of transfer rule learning, the structure of induced theoriesand clauses are remarkably simple, although the number of clauses in an induced7



theory can be quite large. It is principally in the representation of possiblyquite complex terms that the logical representation is being exploited. Even inthe case of transfer rule learning, where recursion is central, the induced clausesfollow the term structure of the QLFs in a very direct manner. Also a successfulresponse to the LLL challenge will comprise unit clauses whose complex termstructure will represent the lexical entries and grammar rules.This �ts in well with lexical approaches. Consider categorial grammar whichconsists of a highly structured lexicon and only two grammar rules. Also, push-ing the representational work into the terms makes sense computationally. Wehave fewer more complicated uni�cations (compare appending lists and di�er-ence lists).3 Using expert knowledgeFailing to exploit existing grammatical expertise would clearly be wasteful. AllILP approaches incorporate expert knowledge to some degree via the choice ofbackground predicates. In some ILP/NLP approaches more interaction withthe expert is enabled.This is most notable in the ASIUM system. \Clustering steps are intertwinedwith co-operative validation steps where a domain expert assesses and re�nes thelearning results" [8]. The user also names the induced clusters. This interactionis facilitated by a graphical user interface.In other cases the goal is to induce a theory to complete what an expert hasprovided already. In the case of transfer rule learning, the experts provided thenon-recursive transfer rules and the job was to build the recursive ones. A pre-vious alternative approach was to hand-craft non-recursive rules by inspectingthe data.The LLL challenge is an exercise is grammar completion. Although theLLL challenge is arti�cial, the problem of grammar completion is very realgiven the continued di�culty in producing wide-coverage grammars purely byhand. Being able to build on an existing hand-crafted grammar (perhaps inco-operation with an expert) to achieve wider coverage is a very importantapplication area for ILP.4 Hybrid approachesGiven that ILP is not a `silver bullet' it is often used in conjunction with othermethods. Leaving aside the non-trivial task of pre-processing data to get it intoProlog form, we see a number of hybrid approaches:� The ASIUM system takes the output of a syntactic parser (SYLEX) toprovide its basic input.� In [3] lexical statistics are used to resolve ambiguities left pending by theinduced contextual rules. 8



� In [4] induced rules are parameterised and used to provide probabilities toa Gibbs sampling based tagger.� In [9] a genetic algorithm is used to search for a (suitably de�ned) optimalsegmentation of initially unsegmented words in the training data. Thesesegmented words are then used as training data for the ILP algorithmCLOG, which looks for general segmentation rules using these examplesof particular segmentations.5 RecursionAlthough ILP systems are unusual in their ability to induce recursive rules,this facility has very rarely been used in real-world applications. (The soleexception is an application in �nite element mesh design1.) It is worth notingthat recursively de�ned background predicates have been used extensively intagging, morphological and phonetic work to provide operations on lists of tags,words, letters, etc.It seems likely that, with some applications to NLP, recursion will appear ininduced clauses rather than just background clauses. This would necessarily beso when (directly) learning or completing recursively de�ned grammars. Learn-ing recursive clauses is generally harder, but the work on transfer rule learningalready provides an example of an application where the structure of the termsin the data can `push' the search for a suitable recursive theory in the rightdirection.6 Large data setsThe corpus-based tagging work uses data sets which are considerably largerthan is usual in ILP. [5] used a 100,000 word corpus. Lindberg and Eineborg,as well as Cussens used training sets of up to 6000 examples. In all these casestraining times were long: WARMR took 5 days on the 100,000 word corpus, in[3] 6000 examples usually took in the region of 20,000-30,000 seconds (albeit ona slow Sparc 5). Lindberg and Eineborg give one example of 493 rules beinginduced from 1284 positives and 419 negatives in 11,785 seconds.If the results of ILP induction are valuable enough, then a wait of severaldays may be a small price to pay. However, it seems likely that corpus basedILP will focus e�ort on increasing the e�ciency of ILP algorithms. This hasalready occurred to a limited extent; for example caching and a more e�cientrepresentation of examples in P-Progol were motivated by work on tagging.CLOG was developed to learn decision lists (for morphology) more e�cientlythan FOIDL. In the future it seems likely that there will be greater use ofdatabase techniques in ILP: the work with WARMR is an example of this.1Luc de Raedt, personal communication 9


