
4      The Case Control 
         Structure 

 
• Decisions Using switch 

The Tips and Traps 
• switch Versus if-else Ladder 
• The goto Keyword 
• Summary 
• Exercise 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

135 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



136                                                                     Let Us C 

n real life we are often faced with situations where we are 
required to make a choice between a number of alternatives 
rather than only one or two. For example, which school to join 

or which hotel to visit or still harder which girl to marry (you 
almost always end up making a wrong decision is a different 
matter altogether!). Serious C programming is same; the choice we 
are asked to make is more complicated than merely selecting 
between two alternatives. C provides a special control statement 
that allows us to handle such cases effectively; rather than using a 
series of if statements. This control instruction is in fact the topic 
of this chapter. Towards the end of the chapter we would also 
study a keyword called goto, and understand why we should avoid 
its usage in C programming. 

I 

Decisions Using switch 
The control statement that allows us to make a decision from the 
number of choices is called a switch, or more correctly a switch-
case-default, since these three keywords go together to make up 
the control statement. They most often appear as follows: 
 

switch ( integer expression ) 
{ 
 case constant 1 : 
  do this ; 
 case constant 2 : 
  do this ; 
 case constant 3 : 
  do this ; 
 default : 
  do this ;  
} 
 

The integer expression following the keyword switch is any C 
expression that will yield an integer value. It could be an integer 
constant like 1, 2 or 3, or an expression that evaluates to an 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



Chapter 4: The Case Control Structure                     137
 

integer. The keyword case is followed by an integer or a character 
constant. Each constant in each case must be different from all the 
others. The “do this” lines in the above form of switch represent 
any valid C statement. 

What happens when we run a program containing a switch? First, 
the integer expression following the keyword switch is evaluated. 
The value it gives is then matched, one by one, against the 
constant values that follow the case statements. When a match is 
found, the program executes the statements following that case, 
and all subsequent case and default statements as well. If no 
match is found with any of the case statements, only the 
statements following the default are executed. A few examples 
will show how this control structure works. 

Consider the following program: 
 

main( ) 
{ 
 int   i = 2 ; 
 
 switch ( i )  
 { 
  case 1 : 
   printf ( "I am in case 1 \n" ) ; 
  case 2 : 
   printf ( "I am in case 2 \n" ) ; 
  case 3 : 
   printf ( "I am in case 3 \n" ) ; 
  default : 
   printf ( "I am in default \n" ) ; 
 } 
} 
 

The output of this program would be: 
 

I am in case 2  

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



138                                                                     Let Us C 

I am in case 3  
I am in default  
 

The output is definitely not what we expected! We didn’t expect 
the second and third line in the above output. The program prints 
case 2 and 3 and the default case. Well, yes. We said the switch 
executes the case where a match is found and all the subsequent 
cases and the default as well.  

If you want that only case 2 should get executed, it is upto you to 
get out of the switch then and there by using a break statement. 
The following example shows how this is done. Note that there is 
no need for a break statement after the default, since the control 
comes out of the switch anyway. 
 

main( ) 
{ 
 int   i = 2 ; 
 
 switch ( i )  
 { 
  case 1 : 
   printf ( "I am in case 1 \n" ) ; 
   break ; 
  case 2 : 
   printf ( "I am in case 2 \n" ) ; 
   break ; 
  case 3 : 
   printf ( "I am in case 3 \n" ) ; 
   break ; 
  default : 
   printf ( "I am in default \n" ) ; 
 } 
} 
 

The output of this program would be: 
I am in case 2  

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



Chapter 4: The Case Control Structure                     139
 

The operation of switch is shown below in the form of a flowchart 
for a better understanding. 
 

STOP

No

case 1

case 2

case 3

case 4

switch ( choice ) 
{ 
      case 1 : 
            statement 1 ; 
            break ; 
      case 2 : 
            statement 2 ;  
            break ; 
      case 3 : 
            statement 3 ;  
            break ; 
      case 4 : 
            statement 4 ; 
}

statement 1

statement 2

statement 3

statement 4

No

No

No

Yes

Yes

Yes

Yes

START

Figure 4.1 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



140                                                                     Let Us C 

The Tips and Traps 

A few useful tips about the usage of switch and a few pitfalls to be 
avoided: 
 

(a) 

(b) 

The earlier program that used switch may give you the wrong 
impression that you can use only cases arranged in ascending 
order, 1, 2, 3 and default. You can in fact put the cases in any 
order you please. Here is an example of scrambled case order: 

 

main( ) 
{ 
 int  i = 22 ; 
 
 switch ( i )  
 { 
  case 121 : 
   printf ( "I am in case 121 \n" ) ; 
   break ; 
  case 7 : 
   printf ( "I am in case 7 \n" ) ; 
   break ; 
  case 22 : 
   printf ( "I am in case 22 \n" ) ; 
   break ; 
  default : 
   printf ( "I am in default \n" ) ; 
 } 
} 

 

The output of this program would be: 
 

I am in case 22  
 

You are also allowed to use char values in case and switch as 
shown in the following program: 

 

main( ) 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



Chapter 4: The Case Control Structure                     141
 

{ 
 char  c = 'x' ; 
 
 switch ( c )  
 { 
  case 'v' : 
   printf ( "I am in case v \n" ) ; 
   break ; 
  case 'a' : 
   printf ( "I am in case a \n" ) ; 
   break ; 
  case 'x' : 
   printf ( "I am in case x \n" ) ; 
   break ; 
  default : 
   printf ( "I am in default \n" ) ; 
 } 
} 

 

The output of this program would be: 
 

I am in case x  
 
In fact here when we use ‘v’, ‘a’, ‘x’ they are actually 
replaced by the ASCII values (118, 97, 120) of these character 
constants. 

 

(c) At times we may want to execute a common set of statements 
for multiple cases. How this can be done is shown in the 
following example. 

 

main( ) 
{ 
 char  ch ; 
 
 printf ( "Enter any of the alphabet a, b, or c " ) ; 
 scanf ( "%c", &ch ) ; 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



142                                                                     Let Us C 

 
 switch ( ch )  
 { 
  case 'a' : 
  case 'A' : 
   printf ( "a as in ashar" ) ; 
   break ; 
  case 'b' : 
  case 'B' : 
   printf ( "b as in brain" ) ; 
   break ; 
  case 'c' : 
  case 'C' : 
   printf ( "c as in cookie" ) ; 
   break ; 
  default : 
   printf ( "wish you knew what are alphabets" ) ; 
 }  
} 

 

Here, we are making use of the fact that once a case is 
satisfied the control simply falls through the case till it 
doesn’t encounter a break statement. That is why if an 
alphabet a is entered the case ‘a’ is satisfied and since there 
are no statements to be executed in this case the control 
automatically reaches the next case i.e. case ‘A’ and executes 
all the statements in this case. 

(d) 

(e) 

Even if there are multiple statements to be executed in each 
case there is no need to enclose them within a pair of braces 
(unlike if, and else).  

 
Every statement in a switch must belong to some case or the 
other. If a statement doesn’t belong to any case the compiler 
won’t report an error. However, the statement would never get 
executed. For example, in the following program the printf( ) 
never goes to work. 

 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



Chapter 4: The Case Control Structure                     143
 

main( ) 
{ 
 int  i, j ; 
 
 printf ( "Enter value of i" ) ; 
 scanf ( "%d”, &i ) ; 
 
 switch ( i ) 
 { 
  printf ( "Hello" ) ; 
  case 1 : 
   j = 10 ; 
   break ; 
  case 2 : 
   j = 20 ; 
   break ; 
 } 
} 

 
(f) 

(g) 

If we have no default case, then the program simply falls 
through the entire switch and continues with the next 
instruction (if any,) that follows the closing brace of switch. 

 
Is switch a replacement for if? Yes and no. Yes, because it 
offers a better way of writing programs as compared to if, and 
no because in certain situations we are left with no choice but 
to use if. The disadvantage of switch is that one cannot have a 
case in a switch which looks like: 

 
   case i <= 20 : 
 

All that we can have after the case is an int constant or a char 
constant or an expression that evaluates to one of these 
constants. Even a float is not allowed.  

The advantage of switch over if is that it leads to a more 
structured program and the level of indentation is manageable, 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



144                                                                     Let Us C 

more so if there are multiple statements within each case of a 
switch. 

 

(h) 

(i) 

(j) 

(k) 

(a) 
(b) 

(c) 

We can check the value of any expression in a switch. Thus 
the following switch statements are legal. 

 
  switch ( i + j * k ) 
  switch ( 23 + 45 % 4 * k ) 
  switch ( a < 4 && b > 7 ) 
 

Expressions can also be used in cases provided they are 
constant expressions. Thus case 3 + 7 is correct, however, 
case a + b is incorrect.  

The break statement when used in a switch takes the control 
outside the switch. However, use of continue will not take 
the control to the beginning of switch as one is likely to 
believe. 

 

In principle, a switch may occur within another, but in 
practice it is rarely done. Such statements would be called 
nested switch statements. 

 
The switch statement is very useful while writing menu 
driven programs. This aspect of switch is discussed in the 
exercise at the end of this chapter. 

switch Versus if-else Ladder 
There are some things that you simply cannot do with a switch. 
These are: 

A float expression cannot be tested using a switch 
Cases can never have variable expressions (for example it is 
wrong to say case a +3 : ) 
Multiple cases cannot use same expressions. Thus the 
following switch is illegal: 
 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



Chapter 4: The Case Control Structure                     145
 

switch ( a ) 
{ 
 case 3 : 
  ... 
 case 1 + 2 : 
  ... 
} 
 

(a), (b) and (c) above may lead you to believe that these are 
obvious disadvantages with a switch, especially since there 
weren’t any such limitations with if-else. Then why use a switch at 
all? For speed—switch works faster than an equivalent if-else 
ladder. How come? This is because the compiler generates a jump 
table for a switch during compilation. As a result, during 
execution it simply refers the jump table to decide which case 
should be executed, rather than actually checking which case is 
satisfied. As against this, if-elses are slower because they are 
evaluated at execution time. A switch with 10 cases would work 
faster than an equivalent if-else ladder. Also, a switch with 2 cases 
would work slower than if-else ladder. Why? If the 10th case is 
satisfied then jump table would be referred and statements for the 
10th case would be executed. As against this, in an if-else ladder 10 
conditions would be evaluated at execution time, which makes it 
slow. Note that a lookup in the jump table is faster than evaluation 
of a condition, especially if the condition is complex. 

If on the other hand the conditions in the if-else were simple and 
less in number then if-else would work out faster than the lookup 
mechanism of a switch. Hence a switch with two cases would 
work slower than an equivalent if-else. Thus, you as a programmer 
should take a decision which of the two should be used when. 

The goto Keyword 
Avoid goto keyword! They make a C programmer’s life miserable. 
There is seldom a legitimate reason for using goto, and its use is 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



146                                                                     Let Us C 

one of the reasons that programs become unreliable, unreadable, 
and hard to debug. And yet many programmers find goto 
seductive.  

In a difficult programming situation it seems so easy to use a goto 
to take the control where you want. However, almost always, there 
is a more elegant way of writing the same program using if, for, 
while and switch. These constructs are far more logical and easy 
to understand. 

The big problem with gotos is that when we do use them we can 
never be sure how we got to a certain point in our code. They 
obscure the flow of control. So as far as possible skip them. You 
can always get the job done without them. Trust me, with good 
programming skills goto can always be avoided. This is the first 
and last time that we are going to use goto in this book. However, 
for sake of completeness of the book, the following program 
shows how to use goto. 
 

main( ) 
{ 
 int  goals ; 
 
 printf ( "Enter the number of goals scored against India" ) ; 
 scanf ( "%d", &goals ) ; 
 
 if ( goals <= 5 ) 
  goto sos ; 
 else 
 { 
  printf ( "About time soccer players learnt C\n" ) ; 
  printf ( "and said goodbye! adieu! to soccer" ) ; 
  exit(  ) ;  /* terminates program execution */ 
 } 
 
 sos : 
  printf ( "To err is human!" ) ; 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



Chapter 4: The Case Control Structure                     147
 

} 
 

And here are two sample runs of the program... 
 

Enter the number of goals scored against India 3 
To err is human! 
Enter the number of goals scored against India 7 
About time soccer players learnt C 
and said goodbye! adieu! to soccer 
 

A few remarks about the program would make the things clearer. 
 
− If the condition is satisfied the goto statement transfers control 

to the label ‘sos’, causing printf( ) following sos to be 
executed.  

 
− The label can be on a separate line or on the same line as the 

statement following it, as in, 
 

sos : printf ( "To err is human!" ) ; 
 
− Any number of gotos can take the control to the same label. 
 
− The exit( ) function is a standard library function which 

terminates the execution of the program. It is necessary to use 
this function since we don't want the statement 

 
printf ( "To err is human!" )  

 

to get executed after execution of the else block. 
 
− The only programming situation in favour of using goto is 

when we want to take the control out of the loop that is 
contained in several other loops. The following program 
illustrates this. 

 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



148                                                                     Let Us C 

main( ) 
{ 
 int  i, j, k ;  
 
 for ( i = 1 ; i <= 3 ; i++ ) 
 { 
  for ( j = 1 ; j <= 3 ; j++ ) 
  { 
   for ( k = 1 ; k <= 3 ; k++ ) 
   { 
    if ( i == 3 && j == 3 && k == 3 ) 
     goto out ; 
    else 
     printf ( "%d %d %d\n", i, j, k ) ; 
   } 
  } 
 } 
 out : 
  printf ( "Out of the loop at last!" ) ; 
} 

 

Go through the program carefully and find out how it works. Also 
write down the same program without using goto. 

Summary 
(a) 

(b) 

(c) 

(d) 

(e) 

When we need to choose one among number of alternatives, a 
switch statement is used. 
The switch keyword is followed by an integer or an 
expression that evaluates to an integer.   
The case keyword is followed by an integer or a character 
constant.  
The control falls through all the cases unless the break 
statement is given. 
The usage of the goto keyword should be avoided as it usually 
violets the normal flow of execution. 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



Chapter 4: The Case Control Structure                     149
 

Exercise 
 
[A] What would be the output of the following programs: 
 
(a) main( ) 

{ 
 char  suite = 3 ; 
 switch ( suite ) 
 { 
  case 1 : 
   printf ( "\nDiamond" ) ; 
  case 2 : 
   printf ( "\nSpade" ) ; 
  default : 
   printf ( "\nHeart") ; 
 } 
 printf ( "\nI thought one wears a suite" ) ; 
} 
 

(b) main( ) 
{ 
 int  c = 3 ; 
 
 switch ( c ) 
 { 
  case 'v' : 
   printf ( "I am in case v \n" ) ; 
   break ; 
  case 3 : 
   printf ( "I am in case 3 \n" ) ; 
   break ; 
  case 12 : 
   printf ( "I am in case 12 \n" ) ; 
   break ; 
  default : 
   printf ( "I am in default \n" ) ; 
 } 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



150                                                                     Let Us C 

} 
 

(c) main( ) 
{ 
 int  k, j = 2 ; 
 switch ( k = j + 1 ) 
 { 
  case 0 : 
   printf ( "\nTailor") ; 
  case 1 : 
   printf ( "\nTutor") ; 
  case 2 : 
   printf ( "\nTramp") ; 
  default : 
   printf ( "\nPure Simple Egghead!" ) ; 
 } 
} 
 

(d) main( ) 
{ 
 int  i = 0 ; 
 switch ( i ) 
 { 
  case 0 : 
   printf ( "\nCustomers are dicey" ) ; 
  case 1 : 
   printf ( "\nMarkets are pricey" ) ; 
  case 2 : 
   printf ( "\nInvestors are moody" ) ; 
  case 3 : 
   printf ( "\nAt least employees are good" ) ; 
 } 
} 
 

(e) main( ) 
{ 
 int  k ; 
 float j = 2.0 ; 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



Chapter 4: The Case Control Structure                     151
 

 switch ( k = j + 1 ) 
 { 
  case 3 : 
   printf ( "\nTrapped" ) ; 
   break ; 
  default : 
   printf ( "\nCaught!" ) ; 
 } 
} 
 

(f) main( ) 
{ 
 int  ch = 'a' + 'b' ; 
 switch ( ch ) 
 { 
  case 'a' : 
  case 'b' : 
   printf ( "\nYou entered b" ) ; 
  case 'A' : 
   printf ( "\na as in ashar" ) ; 
  case 'b' + 'a' : 
   printf ( "\nYou entered a and b" ) ; 
 } 
} 
 

(g) main( ) 
{ 
 int  i = 1 ;  
 switch ( i - 2 ) 
 { 
  case -1 : 
   printf ( "\nFeeding fish" ) ; 
  case 0 : 
   printf ( "\nWeeding grass" ) ; 
  case 1 : 
   printf ( "\nmending roof" ) ; 
  default : 
   printf ( "\nJust to survive" ) ; 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



152                                                                     Let Us C 

 } 
} 

 
[B] Point out the errors, if any, in the following programs: 
 
(a) main( ) 

{ 
 int  suite = 1 ; 
 switch ( suite ) ; 
 { 
  case 0 ; 
   printf ( "\nClub" ) ; 
  case 1 ; 
   printf ( "\nDiamond" ) ; 
 } 
} 
 

(b) main( ) 
{ 
 int  temp ; 
 scanf ( "%d", &temp ) ; 
 switch ( temp ) 
 { 
  case ( temp <= 20 ) : 
   printf ( "\nOoooooohhhh! Damn cool!" ) ; 
  case ( temp > 20 && temp <= 30 ) : 
   printf ( "\nRain rain here again!" ) ; 
  case ( temp > 30 && temp <= 40 ) : 
   printf ( "\nWish I am on Everest" ) ; 
  default : 
   printf ( "\nGood old nagpur weather" ) ; 
 } 
} 
 

(c) main( ) 
{ 
 float  a = 3.5 ; 
 switch ( a ) 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



Chapter 4: The Case Control Structure                     153
 

 { 
  case 0.5 : 
   printf ( "\nThe art of C" ) ; 
   break ; 
  case 1.5 : 
   printf ( "\nThe spirit of C" ) ; 
   break ; 
  case 2.5 : 
   printf ( "\nSee through C" ) ; 
   break ; 
  case 3.5 : 
   printf ( "\nSimply c" ) ; 
 } 
} 
 

(d) main( ) 
{ 
 int a = 3, b = 4, c ; 
 c = b – a ; 
 switch ( c ) 
 { 
  case 1 || 2 : 
   printf ( "God give me an opportunity to change things" ) ; 
   break ; 
 
  case a || b : 
   printf ( "God give me an opportunity to run my show" ) ; 
   break ; 
 } 
} 
  

[C] Write a menu driven program which has following options: 
 
  1.  Factorial of a number. 

 2.  Prime or not 
 3.  Odd or even 
 4.  Exit 

 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



154                                                                     Let Us C 

Make use of switch statement. 
 

The outline of this program is given below: 
 

/* A menu driven program */ 
main( ) 
{ 
 int  choice ; 
 while ( 1 ) 
 { 
  printf ( "\n1.  Factorial" ) ; 
  printf ( "\n2.  Prime" ) ; 
  printf ( "\n3.  Odd/Even" ) ; 
  printf ( "\n4.  Exit" ) ; 
  printf ( "\nYour choice? " ) ; 
  scanf ( "%d", &choice ) ; 
 
  switch ( choice ) 
  { 
   case 1 : 
    /* logic for factorial of a number  */ 
    break ; 
   case 2 : 
    /* logic for deciding prime number */  
    break ; 
   case 3 : 
    /* logic for odd/even */  
    break ; 
   case 4 : 
    exit( ) ; 
  } 
 } 
} 
 

Note: 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG



Chapter 4: The Case Control Structure                     155
 

The statement while ( 1 ) puts the entire logic in an infinite loop. 
This is necessary since the menu must keep reappearing on the 
screen once an item is selected and an appropriate action taken. 
 

[D] Write a program which to find the grace marks for a student 
using switch. The user should enter the class obtained by the 
student and the number of subjects he has failed in.  

 
− If the student gets first class and the number of subjects he 

failed in is greater than 3, then he does not get any grace. 
If the number of subjects he failed in is less than or equal 
to 3 then the grace is of 5 marks per subject. 

 
− If the student gets second class and the number of subjects 

he failed in is greater than 2, then he does not get any 
grace. If the number of subjects he failed in is less than or 
equal to 2 then the grace is of 4 marks per subject. 

 
− If the student gets third class and the number of subjects 

he failed in is greater than 1, then he does not get any 
grace. If the number of subjects he failed in is equal to 1 
then the grace is of 5 marks per subject 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG


