

OBJECTIVES
In this chapter we shall introduce user-defined functions and learn the art of modular
programming using functions. We also introduce the concept of recursion. We learn to do
statistical computations for a frequency table and generating a calendar.

CONCEPT OF A FUNCTION
A function encapsulates some computation to enable the modular development. The function
can be used repeatedly. We have seen the Gcd program. We write the same code as the
‘Gcd function’.We compute the LCM of a and b. LCM = (a*b) / GCD.

5 FUNCTIONS IN C

int gcd(int a,int b) /* gcd function definition */
{int r; /* r is local variable*/

 while (a!= 0) /* a & b are parameters */
 {
 r = b % a;
 b = a;/* in main original value of a & b retained*/
 a = r;
 }

return (abs(b));

 }

main() /* By Anil Pedgaonkar */
{
 int x,y,a,b,g;
 clrscr(); /* gcd function call a = 4 b = 6 */

 printf("gcd of 6 & 4 = %d", gcd(6,4));
 printf("\n give x & y");
 scanf("%d%d",&x,&y);
 printf("\ngcd of x = %d & y = %d is %d",x, y,gcd(x,y));
 printf("\n give a & b");
 scanf("%d%d",&a,&b);

 g = gcd(a,b);/*values of a & b not altered in main*/
 printf("\n gcd of a = %d & b = %d is %d",a,b,g);
 printf("\n lcm = %d",abs(a*b/g));
}

FUNCTIONS IN c Anil Pedgaonkar 74

Output:
User responses are underlined
gcd of 6 & 4 = 2
 give x & y 3 5
gcd of x = 3 & y = 5 is 1
 give a & b 36 10
 gcd of a = 36 & b = 10 is 2
 lcm = 180

Characteristics of a function:
• The program execution always begins with the function main. The main can call other

functions repeatedly. The gcd function is called thrice.
• Each function definition has the following structure.
• return-type Function-name(list of arguments separated by comma)

 {
 Body

 }
• The Body of the function is a compound statement and usually includes the return

statement. No function definition can be nested inside another function. We
observe that the main and the gcd function form separate blocks. One function can call
other functions irrespective of the physical order in which they are defined. However
the definition of the called function must appear ahead of the calling function else we
need to have the declaration statement for the called function in the body of the
calling function.

• At the function call, control is transferred to the called function. When the return
statement is encountered in the called function, the control is transferred back to the
calling function. The called function may return a single value to the calling function.
A function may not return a value to the caller. The calling function may ignore the
returned value. The gcd function returns a value.

• The arguments are called as parameters. These are dummy symbols. The same names
may not be used in the call or the declaration, but the data types must be the same. The
call to the gcd function is made with the arguments 6,4 and x, y also.

• The call is by value. The called function can not directly alter a variable in the calling
function even though the variable is passed as a parameter in the call. The call gcd (a,
b) is made. The variables a and b are 36 & 10 in main but their values are unaltered in
main even though they are changed in the gcd function as seen from the output. The
same is the story with the call gcd (x, y).

GCD OF A SET OF NUMBERS
Example: Find the GCD of the following set of numbers:

{ 80, 60, 500, 80, 305, 110, 45, 300 }

FUNCTIONS IN c Anil Pedgaonkar 75

We use the function gcd(). The given set of numbers is stored in an array. We use register
storage type for the variable r defined in the function gcd(). This storage type is used for
efficiency. The variables are stored in the registers. Registers are memory locations in the
CPU. Only int and char types can be assigned the storage class register. We cannot take the
address of register variables. So the address operator & cannot be applied to register storage
class. For this reason, the variables, a and b in the function main() cannot be assigned register
class.

int gcd(a,b) /* A PROGRAM TO FIND GCD OF A SET OF NUMBERS */

{ register int r;

 while (a != 0)
 r = b%a, b = a, a = r;

return (abs(b));

}

main()
{

int num[] = {80,60,500,80,305,110,45,300};
int g = 0, n = size, k;

clrscr();

for (k = 0 ; k < n ; ++k)

 g = gcd(g, num[k]);

printf("gcd = %d", g);
getch();

}

Output:
gcd = 5

STORAGE CLASSES IN C
Each identifier (variable) has a storage class, as well as type associated with it. The type tells
about the nature of the value of the data item stored whereas the storage class specifies the
initial value, the life, the storage location and the scope of the variable (the functions which
can access the variable.) There are 4 storage classes. They are automatic, register, extern and

FUNCTIONS IN c Anil Pedgaonkar 76

static. We show the difference between automatic (local) and extern (global) variables.

 /*EXPLAIN CALL BY VALUE*/

int a = 2,b= 3; /*GLOBAL variables*/

int swap(int x,int y)
{int t= 0; /*local auto variable in function swap */

 t = x; x= y; y = t; /*This t different from t in main*/

 printf("\nx & y IN SWAP %d %d\n",x,y);
 t = a; a= b; b = t; /*x & y Exchanged In swap*/
 return (t);
} /* function swap over. Returned value ignored in main */

main()
{int x = 9, y = 1, t = 5; /* local variables in main*/
clrscr();

printf("STARTING FROM MAIN x = %d y = %d\n",x,y);
printf("t IN MAIN = %d, GLOBAL a = %d b =%d",t,a,b);

swap(x,y); /*call by value t in main unchanged */

printf("MAIN x = %d y = %d",x,y); /*x,y unchanged in main */

printf("\nt = %d a = %d b = %d",t,a,b); /*a & b global
variables hence exchanged*/
}

Output:
STARTING FROM MAIN x = 9 y = 1
t IN MAIN = 5, GLOBAL a = 2 b =3
x & y IN SWAP 1 9
MAIN x = 9 y = 1
t = 5 a = 3 b = 2
Analysis: The swap function is called from main. It exchanges the values of its parameters x
& y, passed by main. They are exchanged in swap but when we return to main the original x
& y retain their values. In the call x & y values are copied.
The variables a & b are defined outside any function. They are global and can be accessed by

FUNCTIONS IN c Anil Pedgaonkar 77

any function like swap that is defined after their declaration. They are changed in swap and
the change is reflected in a & b outside swap in function main as well.
There are two variables t. The t in main is distinct from t in swap. Both are local in the
respective functions. The swap can not access the “t in main” unless it is passed as parameter.
The local variables are private. They are hidden from other functions and when they are
passed in the call, their values are copied onto the parameters.

Difference in Call by Value and Call by Reference :- We present another program. A
function swap is used. It is defined ahead of main . Hence function declaration is unnecessary.
We note that the elements of the array x [] declared in main () are passed by value as x[0] and
x [1] to swap Their values are not exchanged
In this program another function “xchg” takes an int array as parameter. Since it returns
nothing the keyword void is used in its definition.
The definition of xchg follows that of the main and hence it is must to use the declaration of
the function xchg in main. It is declared as void xchg (int d []); We could have written it as
void xchg (int []). .
But the array b declared in main () is passed by reference in the call as xchg (b); since the
name of the array is the address of the array. So it’s elements b [0] and b[1] are exchanged.

void swap(int x,int y)
{int t= 0; /*local auto variable in function swap */
t = x; x = y; y = t;
return;
}

 main ()
{int x[] = {9,1}; static int b[] = {4,7}; /*LOCAL IN MAIN*/
 void xchg(int d[]); /*xchg function declaration*/
 clrscr();
 xchg(b); /*function call x by value, b by reference*/
 swap(x[0], x[1]); /* x[0] and x[1] remain same in main */
 printf("x[0] = %d x[1] = %d\n", x[0],x[1);
 p tf("b[0]= %d b[1]= %d", b[0],
} /* b[0] & b[1] Exchanged in main */
rin b[1]);

void xchg(int d[]) /* Function definition takes int array*/
{int temp;
 temp = x; x = y; y = temp;
 temp= d[0]; d[0] = d[1]; d[1]= temp;
 return;
} /*xchg def over it retuns nothing, observe key word void*/

FUNCTIONS IN c Anil Pedgaonkar 78

Output:
x[0] = 9 X[1] = 1
b[0]= 7 b[1]= 4
Static and global variables:

 A global (extern) variable is defined outside the body of any function and it can be accessed
and altered by any function whose definition follows the definition of the extern variable.

 If the function definition appears ahead the definition of the extern variable then the function
body must have an explicit declaration for the global variable.

 Suppose the global variable is defined as char a; its declaration will appear like char extern
char a;

 On the other hand the automatic (local) variables are the variables which are declared within a
function. The keyword auto in their declaration is optional and usually omitted.

 The local (automatic) variables are reinitialized each time the function call is made
 The function parameters are treated as local to the body of the called function.
 The static variables are also local to the body of the function .
 The static variables retain their values across the function calls.

VARIABLE

TYPE
AUTOMATIC REGISTER STATIC EXTERN

Location Memory CPU registers Memory Memory
Initial value Garbage Garbage Zero. Zero.
Scope Local to the

block
(function)

Local to the
block (function)

Local to the
block (function)

Global
(accessible to all
the functions)

Life Created anew on
each entry to the
block and cease
to exist when the
block is exited

Created anew on
each entry to the
block and cease
to exist when the
block is exited

The value
persists after the
block is exited
and again the
block is reentered

The life of the
program

Definition and
declaration

auto char c; OR
char c;

Register int k; static float sum; float sum; at the
start of the
program and
ahead of any
function. If the
definition is
following the
function then
extern
declaration is
required in the
function as
extern float sum;

FUNCTIONS IN c Anil Pedgaonkar 79

We note that the storage class register can be used only for int and char variables of auto
class. We can not take the address of the register variables as they are stored in the CPU
registers and not in RAM. The compiler may ignore our register declaration and store them in
RAM
We present a program to illustrate the concept of static variables.

/*EXPLAIN LOCAL(AUTO), STATIC and GLOBAL VARIABLES*/

int t;
int fun() /* The function def returns int takes
nothing*/

 /*global variables default value 0*/

{
return (-1);

}

void dummy()
{int z = 0; /* auto variable local in dummy */
static int x =0; /*local to dummy & static default value 0*/
printf("z = %d x = %d,t = %d", ++z, ++x,++t);
return;
} /* definition of dummy over*/

main()
{ int z = 3, x = 3; /*local in main*/
 clrscr(); /*x & z of main hidden from dummy */

 printf("dummy call 1\n");
 dummy();

 t = fun(); ; z+= 2,x+=2 ;

 printf("\n dummy call 2\n");
 dummy();
}

Output:
dummy call 1
z = 1 x = 1,t = 1
dummy call 2
z = 1 x = 2,t = 0

FUNCTIONS IN c Anil Pedgaonkar 80

Analysis of the program:
We have two functions, fun and dummy.
 The fun does not take any argument but returns an int.
Here, t is a global (extern) variable, x is a static variable in dummy, and z is a local (auto)
variable in dummy.
 There are another variables, x and z defined as local variables in main.
Both main and dummy have no access to the x, and z variables of the other function unless
they are passed as arguments in the function call, and can not alter the values of the x and y of
the other function in their body.
The global variable t can be accessed and altered by any function. The static z and the extern t
are initialized to 0 by default.
At the second call of dummy the z in dummy is again 1 as z is reinitialized to 0 when the
body of dummy is reentered.
But the static variable x retains its value 1 after the first call and thus x is 2 in the call.
The extern t is changed in the main via the function call fun (); and thus we have the value of
t as 0.
We note that it is possible that a local and the global variable have same name.
 In such case within the body of the function the local variable will be considered.
One must avoid global and static variables as far as possible since they violate the
principles of information hiding.

Function Declarations
We have not used function declarations as we have placed function definitions ahead of the
main. If the function definition follows the definition of the calling function then the calling
function must have a function declaration for the called function in it’s body. Even otherwise,
it is a good practice to always include declarations of all the functions in main. We have not
done only to reduce the length of the program text, looking at the psychology of the student.
Examples of declarations:

• Declare a function accepting one char one int and returning a char.
char f (char a, int b); or char f(char, int);

• Declare a function accepting one array of int, one float and returning nothing.
void f (int a[], float x); or void (int[], float);

• Declare a function returning an int and accepting nothing.
int f();

• Declare a function accepting nothing and returning nothing.
 void f();
 The keyword void stands for a non-existent type.
• Declare a function accepting an array of chars and returning a char.
 char f(char x[]); or char f(char []);
• Declare a function accepting nothing and returning a float

float f();

FUNCTIONS IN c Anil Pedgaonkar 81

• We note that a function can not return an array as function returns only single value.
THE SORTING PROGRAM USING FUNCTIONS

The functions encourage modular development and their use is highly recommended. We
reorganize our sorting program using three functions, input sort and print to take care of three
different jobs. The input function asks the user to enter the exact size of array, stores it in the
variable n and accepts input for the elements. The array a and n are passed to sort and then to
the print function.

#define size 10000
int input(int a[]) /* function to input numbers in an array
*/
{ int n, i;

clrscr();
printf("\n how many numbers to sort?");
scanf("%d", &n);

for (i = 0; i < n; ++i)
{

 printf("give a[%d]",i);
 scanf("%d", &a[i]);

 }
 return(n);
}

void print(int a[], int n)
 /* function to print the array */
{ int i;

clrscr();

for (i = 0 ; i < n; ++i)
{

 if (i%10 == 0)/* 10 numbers are printed per line
*/

printf(“\n”);

 printf(" %2d", a[i]); /* 10 numbers per line */
}

 return;
}

FUNCTIONS IN c Anil Pedgaonkar 82

 void sort(int a[], int n) /* function to sort */

{ int i, j , t;

for(i= 0; i < n-1 ; i++)

 {for(j =0; j < n; j++)

 { if (a[i] > a[j])

 { t =a[i]; a[i] = a[j]; a[j] =t;
 }
 }

 }

return;
}

main()
{

int a[size], n;
n = input(a);
sort(a, n);
print(a, n);
getch();

}

RECURSION
It is possible for a function to call itself. This is called recursion.
Sum of first n numbers using recursion
The sum can be defined as sum(n) = sum(n-1) + n , sum(1) = 1. We have the program.
Thhe function sum declared in main callss sum function again.

int sum(int n) /*DEFINITION OF SUM FUNCTION */
{ int s;

if (n > 1)

s = sum(n -1) + n;
else

s = 1;

return(s);

}

FUNCTIONS IN c Anil Pedgaonkar 83

The GCD program using recursion
We note that gcd(a,b) = gcd(b%a,a) , gcd(0,b) = b. We show the program and it’s output.

int gcd(int a, int b) /*recursive program for gcd */
{

if (a != 0)
{

printf("\n gcd of %d & %d", b%a,a);
return gcd(b%a,a);

}

 else

return b;
 return;

}

main()
{

int a,b;
clrscr();
printf("\n give 2 positive nos");
scanf("%d%d", &a, &b);
printf("\n Hence gcd of %d & %d = %d", a,b,gcd(a,b));

}

Output:
give 2 positive nos
gcd of 10 & 36
gcd of 6 & 10
gcd of 4 & 6
gcd of 2 & 4
gcd of 0 & 2
Hence gcd of 36 & 10 = 2

Computationally Inefficient use of Recursion

Though Recursion is a powerful tool the recursive program if
poorly designed can be computationally inefficient involving
many redundant and repetitive computations. Algorithms like
sum of first n numbers, GCD or the product of first n numbers
are inherently more suited to iteration using While or for
Loop. We note that it is computationally inefficient to write

FUNCTIONS IN c Anil Pedgaonkar 84

the Fibonacci number generation program recursively in the C
language because the numbers prev and next are computed twice,
though many books ask to write the program recursively
However there are some problems for which recursion is the
natural way in which algorithm can be formulated. To program
these algorithms non recursively necessarily involve building
a stack which is a data structure discussed at a later stage
in the book. There are languages like LISP, Prolog which use
recursion rather than iteration as a fundamental programming
construct. In older languages like Basic , Fortran recursion
was not allowed but as we shall see it is a natural way and in
some sense the analogue of Principal of Mathematical Induction
which reader might have encountered in high School. Recurisve
solutions are often elegant and shorter.

TOWERS OF HANOI PROGRAM

The Towers of Hanoi problem is very much suited for recursion.
We are given n disks numbered from 1 to N placed on tower A. The disks are arranged such
that disk 1 is smaller in size than disk 2, disk 2 is smaller in size than disk 3 … and so on.
They are placed on tower A in ascending order. We are given two towers B and C. The
problem is to transfer the N disks from tower A to tower C using the spare tower B while
preserving the order, subject to the following two conditions.

Condition One:- You should move only one disk at a time.
Condition Two :- You can not keep a bigger disk on a smaller disk.

The problem admits a simple recursive situation for n disks if we assume that N - 1 disks are
already moved using the following three steps.

1. Move N - 1 disks from Tower A to Tower B using Tower C as spare.
2. Move disk N from Tower A To C
3. Move N – 1 disks from Tower B to Tower Using tower A Spare.

This is an example of the phenomenon of exponential computational complexity.
To move n disks we need to call the function to move N-1 disks twice. . So if O(n) is the
number of moves then we have O(n 0 = 2O(n-1) + 1
For n =1 we require a single move. For n = 2 we require 3 moves and for n = 3 we require 7
moves as can be easily checked using the above algorithm. So for n disks the number is 2 n -1
 We can use Mathematical induction to deduce this.
O(n) = 2O(n-1) + 1 = 2.(2 n – 1 - 1) + 1 = 2 n - 2 + 1 = 2 n -1
It can be checked that number of moves for 10 disks are 1023 , and so on. It increases rapidly.
We write a recursive program to solve this puzzle. The reader should try to write a
nonrecursive program and then will appreciate the power of recursion.

FUNCTIONS IN c Anil Pedgaonkar 85

unsigned long count;

void hanoi(int n, char s, char t, char d)
{
 if (n != 0) /* Hanoi program by anil Pedgaonkar*/
 { hanoi(n-1, s, d, t);

printf("\nMove disk %d from %c to %c number of
moves = %lu" ,n, s, d, ++count);

 hanoi(n-1, t, s, d);
 }
}

main() /* Towers of Hanoi */
{ int n; char s ='A', t = 'B', d ='C';
 clrscr();
 printf("\n give number of disks");
 scanf("%d", &n);

 hanoi(n,s,t,d);
 printf("\nHanoi tower by Anil Pedgaonkar”);
 printf(“ Number of moves = %lu",count);
}

Output:
give number of disks
move disk 1 from A to C number of moves = 1
move disk 2 from A to B number of moves = 2
move disk 1 from C to B number of moves = 3
move disk 3 from A to C number of moves = 4
move disk 1 from B to A number of moves = 5
move disk 2 from B to C number of moves = 6
move disk 1 from A to C number of moves = 7
Hanoi tower by Anil Pedgaonkar Number of moves = 7

THE DAY ON A GIVEN DATE PROGRAM
We present the program. The days are numbered from 0 to 6 with Sunday as 0. We need to
compute the remainder modulo 7 and consider leap years. The number of leap years up to and
including 2000 are 484 and can be easily computed using the formula in the program. We use
the symbolic constant START to store the day on Jan 1,2000 and the function week to print
the day on corresponding to the number. We first present the output for three dates.
give date as dd/mm/yyyy 01/01/2010
Day programmed by Anil Pedgaonkar Friday
give date as dd/mm/yyyy 17/12/1994
Day programmed by Anil Pedgaonkar Saturday
give date as dd/mm/yyyy 26/01/2011
Day programmed by Anil Pedgaonkar Wedensday

FUNCTIONS IN c Anil Pedgaonkar 86

#define start 6 /* DAY ON 1 JAN 2000 */
#define leapcount 484 /* Number of leap years elapsed till year 2000 */
int week(unsigned long num)
{ if (num < 0) num += 7;
 printf("\nDay programmed by Anil Pedgaonkar ");
 switch(num)
 { case 0 : printf("Sunday"); break;
 case 1 : printf("Monday"); break;
 case 2 : printf("Tuesday"); break;
 case 3 : printf("Wedensday"); break;
 case 4 : printf("Thursday"); break;
 case 5 : printf("Friday"); break;
 case 6 : printf("Saturday"); break;
 }
 return (num);
}

main() /* Day on a Date By Anil Pedgaonkar */
{ int leap, d, m, leapyears, i, num =start, years; unsigned long y;
 static int month[] = {0,31, 28, 31,30,31,30,31,31,30,31,30,31}; clrscr();
 printf("\n give date as dd/mm/yyyy "); scanf("%d/%d/%lu", &d, &m, &y);
 printf("%02d/%02d/%4lu", d, m, y);

 leap = ((y%4 == 0 && y %100 != 0) || y%400 == 0); /*Test whether leap
year*/
 years = y >= 2000 ? (y - 2000) % 7 : - ((2000 - y) % 7);
 num += years;

 leapyears = (y/4 - y / 100 + y / 400 - leapcount);
 leapyears = leapyears > 0 ? leapyears % 7 : - (abs (leapyears) % 7);
 if (y == 2000) --num; /* Dont add a day for 2000 unless Feb is over */
 num += leapyears;

 for (i = 1; i < m; ++i) num += month[i];
 if(leap && y < 2000) --num; /* Going in the Past */
 if (leap && m > 2) ++num; /* Add a day after Feb */

 num += (d - 1) ;
 num = num >= 0? num % 7 : - (abs (num) % 7) ;
 num = week (num); /* Finds the day */
 }

FUNCTIONS IN c Anil Pedgaonkar 87

QUESTIONS

Q I. Write function declarations (function prototypes) for the following functions:
(1) A function which takes one int, one array of chars and returns nothing.
(2) A function taking no arguments but returning a float.
(3) A function accepting an int and returning a character.
(4) A function accepting no argument and returning nothing.
(5) A function taking no arguments and returning nothing.
(6) A function taking a double array and returning a long integer.

Q. II State whether the following are true or false by giving reasons:
(1) A function must return a value.
(2) A function can return an array.
(3) The value returned by a function must be used.
(4) The value of a static variable can not be changed outside the function in which it is

defined.
(5) One can use the same name for a global and automatic variable.
(6) A register variable is always stored in a register.
(7) A function can call itself recursively even if it does not return a value.
(8) A float variable can not have the storage class register.
(9) A static variable, which is not initialized, has garbage as its initial value.

(10) #define can be used to define a formula or one line function.
(11) The local variable can not be altered by the function if the function has an automatic

variable declaration with the same name.
(12) Even if an automatic variable defined in the calling function is not passed to the called

function one can use the called function can alter its value in the calling function by
reassigning the value returned by the calling function.

(13) An array value can be altered in the called function ,even though the array is automatic
when the array name is passed as the argument.

1.
Q. III Answer the following questions in brief:
(1) Which are the storage classes in C? Illustrate.
(2) Explain the phenomenon of persistence of values of static variables across the function

cals by an example
(3) Rewrite the prime number program using the register storage clas for num, factor ,and

prime.
(4) What is a recursive function? Analyze the reasons as to why the fibonacci number

generation program should not be written recursively.

Q. IV Find the output of the following programs after correcting errors, if any:

FUNCTIONS IN c Anil Pedgaonkar 88

(1)
int sum;
main()
{
 int k = 1;
 ++k;
 sum += k;
 --sum;
 printf(“%d”,sum);
}

(2)
char c;
void reverse (char k)
{
k = k+ ‘z’ – ‘a’;
}
main()
{

char k = ‘a’;printf(“%c”,reverse(c));
k = c;
reverse(k);
c = k;
printf(“%c”,c);

}

(3)
float sum = -1;
int sum(int k)
{ int sum = 0;
 sum += k;
 return;
}

main()
{
 int k = sum;

k = sum(k);
printf(“%d”,sum(k);

}

(4)
void addone()
{
 static int a; int b = 0;

++a; ++b;
printf(“%d %d “,a,b);
return;

}

main()
{
 adone();
 return;
}

(5)
int k = 0;
int add()
{
 int a;
 a += k;
 ++k;
 return(a);
}

(6)
char swap(char a, char b)
{
 char temp;
 temp = a,
 a = b,
 b= temp;
 return(temp);
}

FUNCTIONS IN c Anil Pedgaonkar 89

main()
{
 int a;

a = add();
printf(“%d”,a);
a = add();
printf(“%d”,a);

}

main()
{
 char a = ‘a’,b = ‘b’;
 a = swap(a,b);
 printf(“%c %c”,a b);
}

(7)
char a = ‘a’, b = ‘b’;
main()
{
 char swap(char a, char b);
 swap(a,b);
 printf(“%c %c”,a,b);
}

char swap(char a, char b)
{
 char temp;
 temp = a; a = b; b= temp;
 return(temp);
}

(8)
int sum;
main()
{
 int sum(int);
 printf(“%d”,sum(sum);)
}

int sum (int k)
{
 k = (k = 3)? k : sum(++k);
 return(k);
}

(9)
void sum()
static int k;
{
 if k = 3
 printf(“%d”,k);
 else
 sum(k++);}
main()
{
 sum();
}

(10)
#include <stdio.h>
char word = “mat”
char swap(char a,char b)
{
 char t = a; a= b; b = t; return(a);
}

void xchg(char x[])
{
 char a = x[0], b = x[1], t = a; a= b; b = t;
 return;
}

main()
{

FUNCTIONS IN c Anil Pedgaonkar 90

 char name = “am”
 swap (name[0], name[1]); puts(name);
 xchg (name); puts(name);
 swap(word[0],word[1]);
 puts(word);
 }

PRACTICAL EXERCISES

1. Write functions to input an array of floating point numbers, to print the array, and to copy the array to
another array.

2. Write a function to compute mean deviation, from m where m can be mean mode or median for a set of
observations entered by user along with their frequencies.

3. Write a function to compute mean deviation, from m where m can be mean mode or median for a frequency
table.

4. Write a recursive function to reverse a string.
5. Write a recursive function to print the future values and present values for a given amount for n years at the

rate of interest r%.
6. Write a recursive program to sort an array.
7. Write a function to find the correlation coefficient.
8. Write a the tower of hanoi programs by describing the disks and towers graphically.

∴ ∴ ∴ ∴ ∴

	QUESTIONS
	PRACTICAL EXERCISES

