Pseudo-Noise Sequences

® Noise-like wideband spread-spectrum signals are generated

using PN sequence.

- In DS/SS(direct-sequence spread-spectrum) , a PN spreading
waveform is a time function of a PN sequence.

- In FH/SS(frequency-hopping spread-spectrum), frequency-
hopping patterns can be generated from a PN code.

- PN sequences are deterministically generated, however they
almost like random sequences to an observer.

- The time waveform generated from the PN sequences also

seem like random noise.



M-sequences (1)

® M-sequence (binary maximal length shift-register sequence)
- Generated using linear feedback shift-register and exclusive
OR-gate circuits.
® Linear generator polynomial g(x) of degree m>0

m-1

9(X) = gmX " + OpegX | F e+ gX+ g

- Recurrence Equatiorgf, =g = )1

m m-1 m-2 +.

= Om-1X ~ * Om-2X -+ g1X+ go (mod 2)

- If g; =1, the corresponding circuit switch is closed,
otherwisey; # 1itis open.
- Output of the shift-register circuit is transformed to 1 if it is

0,and -1 ifitis 1.
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M-sequences (2)

The maximum number of non-zero state 28 — |, which is

the maximum period of output sequence (cy,C;,Cp -+ )

The state of the shift-register at clock pulse i is the finite
length vector s =(5(m-1),s(m-2)....,s(0)) and the
output at clock pulse i ix; =5(0).

Output sequence recurrence condition according to g(x)

Ci+m = Om-1G+m-1t Om-2G+m-2 ++- + 01G1 + G (mod 2)

Example of a shift-register sequence

For any nonzero starting stasg® (0,0,00,0)), the state of
shift-register varies according to the recurrence condition.

Other g(x) may vield a sequence of shorter period2flan . 1
For different initial loading, output sequences become a shift
of the sequenccg:,TJ_rjg (shift c to the left(right) by j units).

A linear combinations oﬂ'_49,T_3c_:,T_2c_:,T_1c_:,g, yields

all the other shift ofc.

For example,T_zg +cC yields T_7c_: = T249



Example of M-sequence
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Clock pulsc |
i 11111
1 01111
3 10111
3 01011
4 LT
5 UL
& 10601
7 01000
8 1 (b
g 10010
1] 010
11 101
12 01010
13 10101
14 11010
15 01101
16 00110
17 DO011
18 00001
19 TEELI
el | 11000
21 111040
Iz 01110
23 i
4 10011
a5 1101
25 0 1 0ay
27 11 1
28 . 111
24 11101
1] 11110
3l 11111
12 01111

33 repeals
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Shift-register sequence witg(x)= x> +x* +x%+x+ 1



Primitive Polynomial (1)

® M-sequence
- A binary linear shift-register sequence that has a period

N=2" -1, where m is the degree of the generator polynomial

® Primitive Polynomial

the generator polynomial of m-sequence is primitive poly-

nomial.

g(x) is a primitive polynomial of degree m if the smallest

integer n for which g(x) dividex" + i n=2"-1

4 2

g(x):x5+x

+X°+x+1 is a primitive. On the other hand,

g(x)=x+x*+x3+x?+x+1 is not primitive since

4 3 2

X% +1=(x+1)(x° +x* + x3+x? + x+1), so the smallest n is 6.

The number of primitive polynomial of degree m is equal to
1 ,.m _ 1

La2m-1), where (p(n)—nﬂ%——%

m p|n P

- p\n denotes “all distinct prime divisors of n”

- @(n) is the number of positive integer less than n that are

relatively prime to n.
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Primitive Polynomial (2)

® Example

- for m=4, %1([3(24 1)——B. 1H- 1H=

40 3
- Above 2 polynomial is 100011 and 11001

- One may search for primitive polynomial by trial and error.
- for extensive tables of primitive polynomials, refer to materials
on linear algebra and coding theory

® Example of non-primitive generator polynomial

B - B+ & %

L L l» lb -
ClockPulsei  State
1111
{1' 0111
3 1011
3 1101
4 1110
5 TI11
6 repeats
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- g(x)=x>+x*+x3+x% +x+1 is not primitive , since it yields
g P

period 5 instead of 15.



Property of m-sequences (1)

® Property | — The Shift Property
A cyclic shift(left-cyclic or right-cyclic) of an m-sequence is
also an m-sequence

® Property Il — The Recurrence Property

Any m-sequence inS, satisfies the recurrence condition

C+m = Om-1G+m-1 ¥ Im-2C+m-2 -+ Q1G 41 + G (mod2) for

® Property lll — The window Property

If a window of width m is slid along an m-sequence3g,

each of 2™ - 1nonzero binary m-tuples is seen exactly once
® Property IV — One more 1 than O’s

Any m-sequence ir§,, contains 2™ 1's and 2™ - 10's
® Property V — The addition Property

The sum of two m-sequence [g,(mod2, term by term) is

another in S,



Property of m-sequences (2)

® Property VI - The Shift and Add Property
The sum of an m-sequence and a cyclic shift of itself(mod2,
term by term) is another m-sequence

® Property VIl — Thumb-Tack Autocorrelation

The normalized periodic autocorrelation function of an m-
. .. _ 1N c.Oc, -
sequence, defined [a(s)—ﬁ > (-1)7 " is equal to for
j=0

| =0(mod N) and —1/N fori # (nod N)

pli)
r

+1 7

5 T

—1/N

- p(i):%(# of 0’s in gDTig -#of 1'sin gDTig)

- proved easily by shift and add property



Property of m-sequences (3)

® Property VIl — Runs
A run is string of consecutive 1's or a string of consecutive 0’s.
In any m-sequence, one-half of the runs have length 1, one-
guarter have length 2, one-eighth have length 3, and so on. In
particular, there is one run of length m of 1's , one run of
length m-1 of O’s.

® Property IX — Characteristic Phase

There is exactly one m-sequencein the setS,, that satisfies
C=C, The m-sequenceCis called the characteristic m-
sequence or characteristic phase of the m-sequengg in

® Property X — Decimation
The decimation by n>0 of a m-sequencedenoted ax[ n] ,
has a period equal to N/gcd(N,n), if it is not the all-zero
sequence, its generator polynomig{ x) has roots that are n-

th powers of the roots of g(x)



Autocorrelation of m-sequences (1)

® Periodic autocorrelation
- -The m-sequence have the best periodic autocorrelation in
terms of minimizing the maximum value of the out-of-phase
autocorrelation
- Best utilized if the synchronization window is longer than on
period
® Aperiodic autocorrelation
- If the synchronization window is only one period long or
less, then the correlation is aperiodic
- Barker sequences are sequences that have out-of phase
aperiodic autocorrelation magnitude bounded by 1.
- A formal definition of the aperiodic cross-correlation of

X=(Xp, X, XN-1) and y=(VYo,¥1....,Yn-1) IS given by

[IN-1-i . _

B > X Yj+i O<i=sN-1
Cuy(1)= 0 i _

Ej:o Xi-i Y -(N-1)<i<0
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Autocorrelation of m-sequences (2)
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M-sequences summary

Have a thumb-tack autocorrelation function.
Best possible periodic autocorrelation (Minimizing out of
phase autocorrelation).

Excellent for the code synchronization operation.

1
The number of m-sequences is smﬁq ‘(’(N) ).

Some m-sequence pairs have large crosscorrelation values.
M-sequences are not suitable for use in the same SSMA
sequence set.

Definition of periodic crosscorrelation for two sequences

u=uyu, M, _, and V=V,v, M, _,

N-1

Qu,v(n) - z uivgr€1+1 , n |:| Z

1=0
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Preferred Pair

® Any pair of m-sequences having the same period N can be

related by Y =X 0], for some q.

® Definition :
- M#Z0(mod 4) : that is, m=odd or m=2(mod 4)
- Y=Xd], where q is odd and eithe@=2“+1 or
q=2%-2"+1

for modd

n!
- gedmk) = % form=2(mod4)

gcd : the greatest common divisor

® [t is known that preferred-pairs of m-sequences do not exist

for m=4,8,12,16, and it was conjectured that no solutions exist

for all m=0 (mod 4).
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Gold sequences

Gold sequences of length N can be constructed from a
preferred-pair of m-sequences.

A preferred-pair of m-sequences , s&fand Y, has a three-
valued correlation function :
0,,(n)=-1 —t(m), or t(m) -2 for all n,
where t(m) =1+ 2102’20
The set of Gold sequences includes the preferred-pair of m-
sequencesX and Y, and the mod 2 sums of and cyclic
shifts of Y.
Seo ={X Y, xO y, xO Ty, xOT 2y MM O T y}
Ty = (Y0 Yo, Yo (Y, 4, Yo) is a left cyclic shift of Y.
The maximum correlation magnitude for any two Gold

sequences in the same set is equal to the cont{amt
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Example of Gold sequences for m=3

1
® Number of m-sequencesg(,D(?):2

® Length of m-sequencesN=2°-1=7
® Primitive polynomials of degree m=3 (initial loading : 001)
x*+x+1 : x=1001011

X3+ x2+1 - y=1001110

—
L ‘ () Gold seq
I— FT -

(Tly),

Dori Oor | 0or |

|—> - > & (¥).
Ge

Figure 7.1: Gold sequence generator for the preferred-pair g (x) = 4 r41ad
mir) =22+ 21 + 1,
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® The corresponding set of 9 Gold sequences of period 7 is

given by:

1001011 1001110 0000101
1010110 1110001 0111111

01000010 0011000 1101100

® Autocorrelation function for both m-sequences : thumb-tack
shaped

® t(m)=1+20m2'g

® Crosscorrelation function are three-valued : -1, -5, or 3

(Qﬂ(n) =-1 —t(m)=-5 or t(m)-2=23)

e t(m)/N=2""2 goes to 0 exponentially as m goes to infinity.
® This suggests that longer Gold sequences will perform better

as SSMA sequences.
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Kasami Sequences

® Kasami sequences are obtained by decimating the m-sequence

X and performing mod2 addition on cyclically shifted

sequences.

Small set of Kasami sequences

® Decimation sequence = x[s(m)], where s(m) =2"2 +1

® VY is also a periodic m-sequence, with a smaller period equal
to (2"-1/s(m)=2"*-1

® The small set of Kasami sequences is given by :
Syasam =1% X0 y,xOT 1y, x0T 2y, IO T2y}

Ty = (Y0 Yo, Yo (LY, 4, ¥o) is a left cyclic shift of Y.

® The crosscorrelation function for two Kasami sequences takes

on values in the set

{ Hx,y(n) = _:L_S(m)’ or S(m) - 2}

® The total number of sequences in the se215".
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Large set of Kasami sequences

® Consists of sequences of peri@l' —1, and contains both the

Gold sequences and the small set of Kasami sequences as

subsets.

® | et m-sequencesy and Z formed by the decimation ok

by 2™?+1 and 2™?"?+1, and take all sequences formed

by adding X, Y, and z with different shifts of Y and z.
® All the values of auto-correlation and cross-correlation from
members of this set are limited to five values

{-1-1£2"?~1+£2"? +3

® These sequences are one of the candidates for the scrambling

code in W-CDMA systems.
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Example of Kasami sequences for m=4
(Small Set)

® Primitive polynomials X* + x+1 : x=10001001100111
® s(m)=2°+1=5

® Decimating X by s(m), we get y=x5]=10110110101101
® The period of y =2™* -1=3

® The number of Kasami sequenc@d’=4

® Kasami sequences of leng®" -1=15 are given by

100010011010111
001111110111010
111001000001100

010100101100001

® The crosscorrelation function for two Kasami sequences takes

on values in the set

{6,,(n)=-1-s(m)=—(2™? +1)=-5,0r s(m) —2 =3}

19



Orthogonal Codes

® Orthogonal functions are employed to improve the bandwidth
efficiency of spread spectrum systems.

® The Walsh and Hadamard sequences make useful sets for
CDMA.

® The orthogonal functions have the following characteristic :
M-1 ) )
Zocv.(kf)cv,-(kf)=0, iz .

- @(kr), @,(KT) :ith and jth orthogonal members of an
orthogonal set.
- T : symbol duration
® Walsh functions are generated by mapping codeword rows of

special square matrices called Hadamard matrices.

M 0 0 OW,
[0 0O _%) 10 1S-W1
H, =[0], Hz:%) 1H 27D 0 1 10-W, ,
- E) 1 1 oE,—wg
o= TNE
B_IN Hy O



® These functions have zero correlation between each other.,

® Orthogonal spreading codes can be used if all the users of the
same channel are synchronized in time to the accuracy of a
small fraction of one chip, because the cross-correlation
between different shifts of Walsh functions is not zero.
(Forward channel)

® Another method can be used to modulate the orthogonal
functions into the information stream of the CDMA signal.

(Reverse channel)
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Fig. Application of Walsh functions and PN codes in the forward and reverse links of cellular CDMA
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