
MIMO Systems and Transmit Diversity

1 Introduction

So far we have investigated the use of antenna arrays in interference cancellation and for receive

diversity. This final chapter takes a broad view of the use of antenna arrays in wireless communi-

cations. In particular, we will investigate the capacity of systems using multiple transmit and/or

multiple receive antennas. This provides a fundamental limit on the data throughput in multiple-

input multiple-output (MIMO) systems. We will also develop the use of transmit diversity, i.e.,

the use of multiple transmit antennas to achieve reliability (just as earlier we used multiple receive

antennas to achieve reliability via receive diversity).

The basis for receive diversity is that each element in the receive array receives an independent

copy of the same signal. The probability that all signals are in deep fade simultaneously is then

significantly reduced. In modelling a wireless communication system one can imagine that this

capability would be very useful on transmit as well. This is especially true because, at least in the

near term, the growth in wireless communications will be asymmetric internet traffic. A lot more

data would be flowing from the base station to the mobile device that is, say, asking for a webpage,

but is receiving all the multimedia in that webpage. Due to space considerations, it is more likely

that the base station antenna comprises multiple elements while the mobile device has only one or

two.

In addition to providing diversity, intuitively having multiple transmit/receive antennas should

allow us to transmit data faster, i.e., increase data throughput. The information theoretic analysis

in this chapter will formalize this notion. We will also introduce a multiplexing scheme, transmitting

multiple data streams to a single user with multiple transmit and receive antennas.

This chapter is organized as follows. Section 2 then presents a theoretical analysis of the capacity

of MIMO systems. The following two sections, Sections 3 develops transmit diversity techniques

for MIMO systems based on space-time coding. Section 4 then addresses the issue of maximizing

data throughput while also providing reliability. We will also consider transmitting multiple data

streams to a single user. This chapter ends in Section 5 with stating the fundamental tradeoff

between data throughput (also called multiplexing) and diversity (reliability).

2 MIMO Capacity Analysis

Before investigating MIMO capacity, let us take a brief look at the capacity of single-input single-

output (SISO) fading channels. We start with the original definition of capacity. This set of
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Figure 1: A single-input-single-output channel

notes assumes the reader knows the basics of information theory. See [1] for a detailed background.

Consider the input-output system in Fig. 1. The capacity of the channel is defined as the maximum

possible mutual information between the input (x) and output (y). The maximization is over the

probability distribution of the input fX(x), i.e.

C = max
fX(x)

[I(X; Y )] = max
fX(x)

[h(Y ) − h(Y/X)] , (1)

where h(Y ) is the entropy of the output Y .

For a SISO additive white gaussian noise (AWGN) channel, y = x+n, with n ∼ CN (0, σ2) and

with limited input energy (E
{

|x|2
}

≤ Es), one can show that the capacity achieving distribution

is Gaussian, i.e., x ∼ CN (0, Es) and y ∼ CN (0, Es + σ2). It is not difficult to show that if n is

Gaussian and has variance σ2, h(N) = log2(πeσ2). Therefore h(Y ) = log2(πe(Es + σ2)). Also,

h(Y/X) is the residual entropy in Y given the channel input X, i.e., it is the entropy in the noise

term N . Therefore, h(Y/X) = log2(πeσ2) and the channel capacity, in bits/s/Hz, is given by

C = [h(Y ) − h(Y/X)] = log2

(

Es + σ2

σ2

)

= log2 (1 + ρ) , (2)

where ρ = Es/σ2 is the signal-to-noise ratio (SNR).

In the case of a fading SISO channel, the received signal at the k-th symbol instant is y[k] =

h[k]x[k]+n[k]. To ensure a compatible measure of power, set E
{

|h[k]|2
}

= 1 and E
{

|x[k]|2
}

≤ Es.

At this point there are two possibilities, a fixed fading channel with a random but unchanging

channel gain and a slow, but fluctuating channel. In the first case, the capacity is given by

C = log2

(

1 + |h|2 ρ
)

, (3)

where ρ = Es/σ2. An interesting aspect of this equation is that in a random, but fixed channel, the

theoretical capacity may be zero. This is because, theoretically, the channel gain could be as close

to zero making guaranteeing a data rate impossible. What is possible in this case is determining

what are the chances a required capacity is available. This requires defining a new probability of

outage, Pout, as the probability that the channel capacity is below a threshold rate R0.

Pout = P (C < R0) = P

(

|h|2 >
2 R0 − 1

ρ

)

, (4)

= 1 − exp

{

−2 R0 − 1

ρ

}

, (5)

2



where the final equation is valid for Rayleigh fading. Note that in the high-SNR regime (ρ → ∞),

Pout ∝
1

ρ
, (6)

i.e., at high SNR, the outage probability falls off inversely with SNR.

In the case of a time varying channel, assuming sufficient interleaving that the channel is

independent from one symbol to the next, the average capacity over K channel realizations is

CK =
1

K

K
∑

k=1

{

log2

(

1 + |hk|2 ρ
)}

. (7)

Based on the law of large numbers, as K → ∞ the term on the right converges to the average or

expected value. Hence,

C = Eh

{

log2

(

1 + |h|2 ρ
)}

, (8)

where the expectation operation is taken over the channel values h. Note that this expression is

non-zero and therefore with a fluctuating channel it is possible to guarantee the existence of an

error-free data rate.

2.1 MIMO Systems

We now consider MIMO systems with the goal of evaluating the capacity of a system using N

transmit and M receive antennas. We begin with the case of N parallel channels - basically N

SISO channels operating in parallel. However, we will assume that the transmitter knows the N

channels and can therefore allocate power intelligently to maximize capacity.

2.1.1 Parallel Channels

The N parallel channels are AWGN with a noise level of σ2. The received data (y) from input data

x over N channels is modelled as

y = x + n (9)

E{nnH} = σ2IN . (10)

The transmitter has an energy budget of Es which must be allocated across the N channels. The

capacity of this channel is

C = max
{En}

∑

N

n=1
En≤Es,En≥0

N
∑

n=1

log2

(

1 +
En|hn|2

σ2
n

)

, (11)

3



Figure 2: Illustrating Waterfilling.

where En is the energy allocated to the nth channel. The equivalent Lagrange problem is1:

L({En} ; λ) =
N
∑

n=1

log2

(

1 +
En |hn|2

σ2

)

+ λ

(

N
∑

n=1

En − Es

)

(12)

⇒ ∂L

∂En
=

|hn|2
σ2

log2(e)
(

1 + En|hn|2
σ2

) + λ = 0, (13)

⇒ ∀n,

(

σ2

|hn|2
+ En

)

= µ (a constant). (14)

Since En ≥ 0,

En =

(

µ − σ2

|hn|2
)+

, (15)

where (x)+ indicates only positive numbers are allowed, i.e. (x)+ = x if x ≥ 0, else (x)+ = 0. The

constant µ is chosen to meet the total energy constraint. Equation (15) tells us how to allocate

energy given knowledge of the channel attenuation through which the data must suffer.

Interestingly, the optimal power allocation scheme does not allocate all the power to the best

channel. This is because the log2(1 + ρ) expression for capacity implies a diminishing marginal

returns on adding signal power (the capacity grows only as log2 at high SNR, but linearly at

low-SNR). So providing some power to weaker channels can actually increase overall sum capacity.

1Note that the Lagrange problem being set up ignores the constraint that En ≥ 0 for now and that this constraint

is “added” later. A formal proof that this is OK will take us into a detour. The proof uses the fact that if we were to

add this constraint (N of them), the associated Lagrange multiplier is either zero or the constraint is not met with

equality.
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This optimal scheme is known as waterfilling. An intuitive understanding of waterfilling (and

why it is called so) may be obtained from Fig. 2, borrowed from Prof. Schlegel [2]. In the figure,

σ2
n refers to the effective noise power at each time instant, σ2/ |hn|2. Waterfilling tells us that the

optimal strategy is to ‘pour energy’ (allocate energy on each channel). In channels with lower noise

power, more energy will be allocated. In channels with large noise power, the energy allocated is

low . Some channels are so weak that the effective noise power becomes very large. Waterfilling

tells us that transmitting any information on these channels is a waste of energy. If energy is

allocated, the sum of the allocated energy and the effective noise power (σ2
n = σ2/|h2

n) is a constant

(the “water level”, µ). Finally, if the channel were all equal, i.e. σ2
n were a constant, waterfilling

leads to an equal energy distribution. Determining the water level, µ, is an iterative process.

The capacity on using the waterfilling approach is

C =
N
∑

n=1

log2

(

1 +
En |hn|2

σ2

)

. (16)

Aside: The result also leads to an interesting observation: if one could only focus on the times

that the channel is in a “good” condition one could get enormous gains in capacity. Of course,

this may not always be possible. However, thinking of a multiuser situation, if the channel to each

user is changing with time, it is likely that at any time instant, one user has a good channel. By

transmitting energy on that channel, overall capacity can be achieved in a multiuser situation. This

is a new form of diversity called “opportunistic beamforming” [3].

Finally, if the channel is not available at the transmitter, clearly the best distribution scheme

is to spread the energy evenly between all transmitters, i.e. En = Es/N and

C =
N
∑

n=1

log2

(

1 +
Es

Nσ2

)

. (17)

Note that since the log function increases significantly slower than the linear N term, the overall

capacity is significantly larger than that for the SISO case.

2.1.2 Known MIMO Channels

We now turn to the more practical MIMO situation with N transmitters and M receivers with a

full M ×N channel matrix H in between. We will assume we know the channel matrix H at both

the transmitter and receiver. Also, we will set M ≤ N , however, the results here are easily extended

for M > N . To ensure no artificial amplification in the channel, we shall set E{|hmn|2} = 1. The

data received at the M elements can be modelled as

y = Hx + n, (18)
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Figure 3: A communication system that achieves capacity.

where H is the full M × N channel matrix.

Based on the singular value decomposition2 , one can decompose H as H = UΣVH , with

Σ = [diag(d1, d2, . . . , dM ) | 0M×N−M ], where dm ≥ 0 are the M singular values of H. Using

Eqn. (18) and the fact that UHU = IM ,

y = UΣVHx + n, (19)

⇒ UHy = ΣVHx + UHn, (20)

⇒ ỹ = Σx̃ + ñ, (21)

where ỹ = UHy and x̃ = VHx. This transformed data in Eqn. (21) is equivalent to M parallel

channels with effective noise powers of σ2
m = σ2/d2

m. Note that if E{nnH} = σ2I, E{ññH} =

E{UHnnHU} = σ2UHIU = σ2I. Furthermore, since VHV = IN , the energy constraint remains

the same, i.e.,
∑N

n=1 Ẽn = Es. Since the last (N −M) columns of Σ are all zero, the last (N −M)

entries in x̃ are irrelevant. In fact, if the rank of H is r, the system is equivalent to r parallel

channels only. Note that r ≤ min(N, M).

In the rotated (tilde) space MIMO communications is exactly the same as r parallel channels.

The optimal power allocation is, therefore, the same waterfilling scheme as with the N parallel

channels in Section 2.1.1. However, now the energy is spread over the eigen-channels, as opposed

to physical channels. Figure 3 illustrates the communication system being considered. The data

to be transmitted in encoded (if the encoder achieves capacity in an AWGN channel the overall

scheme achieves channel capacity) and sent onto a serial-to-parallel converter with r outputs, where

r is the rank of the channel matrix. The waterfilling scheme is used to determine the powers of

each element in these r outputs. The r outputs are augmented with (N − r) zeros to form the

data vector x̃. Multiplying with the right singular vector matrix V leads to the data vector x

to be transmitted over the N elements. This transmission suffers channel H. At the receiver the
2Any M × N matrix A can be decomposed as A = UΣV

H . The columns of U are the M eigenvectors of HH
H

and the columns of V are the N eigenvectors of H
H
H. The M ×N matrix Σ is a diagonal matrix of singular values.

If M ≤ N , Σ = [ diag(σ1, σ2, . . . , σM ) | 0M×N−M ] where σ2

m are the M eigenvalues of HH
H . Note that this is for an

arbitrary rectangular matrix A and these singular values should not be confused with the noise power. Since HH
H

and H
H
H are positive semi-definite matrices, UU

H = U
H
U = IM , VV

H = V
H
V = IN and σm ≥ 0. The matrix

U (V) is the matrix of left (right) singular vectors.
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length-M data vector y is multiplied by the left singular vectors (UH) resulting in the transformed

vector ỹ. This transformed vector is used for decoding the original data symbols.

The optimal energy distribution Ẽm on the m-th channel and overall capacity are given by

Ẽm =

(

µ − σ2

d2
m

)+

, (22)

C =
R
∑

m=1

log2

(

1 +
Ẽmd2

m

σ2

)

. (23)

To illustrate the workings of this capacity formula, let us consider four examples:

Case 1: 1 transmitter and M receivers, H = [h1, h2, . . . , hM ]T , rank(H) = 1.

Since rank(H) = 1, only one singular value is non-zero and all the energy is allocated to this

eigen-channel. This singular value and the resulting capacity are given by

d1 =
√

|h1|2 + |h2|2 + . . . |hM |2, (24)

C = log2

(

1 +
E

σ2

M
∑

m=1

|hm|2
)

. (25)

Case 2: N transmitters and 1 receiver, H = [h1, h2, . . . , hN ], rank(H) = 1.

Since rank(H) = 1, only one singular value is non-zero and all the energy is allocated to this

eigen-channel. This singular value and the resulting capacity are given by

d1 =
√

|h1|2 + |h2|2 + . . . |hN |2, (26)

C = log2

(

1 +
E

σ2

N
∑

n=1

|hn|2
)

, (27)

Note that this result is valid only if the channel is known at the transmitter.

Case 3: N transmitters and M receivers with perfect line of sight (LOS), without multipath.

Let dt be the distance between the transmit elements and dr the distance between the receive

elements. The transmitter transmits in direction φt with respect to its baseline while the receiver

receives from angle φr with respect to its baseline. In this case,

hmn = exp(jkdr(m − 1) cos φr) exp(jkdt(n − 1) cos φt). (28)

Note that even though the channel matrix H is M × N , it is still rank-1 and d1 =
√

NM . The

capacity is given by

C = log2

(

1 + NM
Es

σ2

)

, (29)
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i.e., in line-of-sight conditions, the arrays at the transmitter and receiver only provide a power gain

of NM .

Case 4: N = M and the channel has full rank with equal singular values.

Since the square of the singular values of H are the eigenvalues of HHH ,

M
∑

m=1

d2
m = trace

(

HHH
)

=
N
∑

n=1

M
∑

m=1

|hmn|2.

Since, on average, the each channel has unit power and we assume equal singular values, d2
m =

NM/M = N , ∀m. Since all singular values are equal the energy allocation is clearly uniform

(Em = Es/N) and

C =
M
∑

m=1

log2

(

1 +
Esd

2
m

Nσ2

)

=
M
∑

m=1

log2

(

1 +
Es

σ2

)

= N log2

(

1 +
Es

σ2

)

. (30)

Note the significant difference in the capacities described in Eqns. (29) and (30). Under perfect

LOS conditions, the transmit and receive array only provide power gain and the capacity increases

as the log of the number of elements. However, when the channel is set up such that each eigen-

channel is independent and has equal power, the capacity gains are linear. The independent channels

allow us to transmit independent data streams (N in the final example above), thereby increasing

capacity.

In summary, in this section we have shown that a system with N transmitters and M receivers

can be reduced to a problem of r parallel AWGN channels, where r is the rank of the channel

matrix. To achieve the greatest gains in capacity, the channels from two different transmitters

to the receivers must be independent and have equal power. The maximum possible gain in the

channel capacity (over the SISO case) is the minimum of the number of transmitters and receivers,

i.e., min(N, M). We will address this final constraint on the linear growth in capacity again in

Section 2.1.4.

2.1.3 Channel Unknown at Transmitter

The analysis in Section 2.1.2 assumes both the transmitter and receiver know the channel matrix

H. However, in the more practical case that the channel is not known at the transmitter, but is

known at the receiver, the approach is not valid. In this case, channel capacity must be determined

as the maximum possible mutual information between input X and output Y.

The capacity is given by

C = max
fX(x)

I(X; Y ) = max
fX(x)

[H(Y) − H(Y/X)] , (31)
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where H(X) is the entropy in X with probability density function fX(x) and is not to be confused

with the channel matrix H. Assuming channel matrix H is known at the receiver, the entropy in

Y, given the input data X, is clearly only due to the noise N. Assuming the noise to be complex,

white and Gaussian with variance σ2,

H(Y/X) = H(N) = M log2(πeσ2) = log2(πeσ2)M , (32)

Given the channel, the entropy is Y is determined by the distribution of X. We invoke the fact

that the input distribution required to achieve capacity is Gaussian, i.e., X must be Gaussian

distributed with X ∼ N(0,Σx) where Σx is the covariance matrix of X and whose diagonal entries

are such that they meet the criterion of limited transmit energy.

From Eqn. (18), given H, Y is also Gaussian with Y ∼ N(0,Σy) where Σy = σ2IM +HΣxH
H

and IM is the M × M identity matrix. Using the entropy result for the Gaussian pdf [1],

H(Y) = log2

[

(πe)M detΣy

]

, (33)

⇒ C = max
fX(x)

I(X;Y) = log2

[

(πe)M det
(

σ2IM + HΣxH
H
)

]

− log2

(

πeσ2
)M

, (34)

= log2 det

(

IM +
1

σ2
HΣxH

H

)

, (35)

Based on an eigendecomposition of the covariance matrix of the input data, Σx, one can show that

the optimal covariance matrix is Σx = (Es/N)IN [1, 2, 4] which corresponds to independent data

streams and equal power distribution over all available channels. The capacity is therefore,

C = log2 det

(

IM +
Es

Nσ2
HHH

)

. (36)

Note that, as with SISO channels, for a fixed MIMO channel unknown at the transmitter, the true

capacity is zero since we cannot guarantee any minimum channel quality.

2.1.4 Fading MIMO Channels

So far we have focused on fixed channels. In the most practical situation, the channels vary as a

function of time. In this case, the channel can change from one time instant to the next. Assuming

sufficient interleaving to make the channel independent from one symbol instant to the next, the

average capacity over a block of K data symbols is given by

C =
1

K

K
∑

k=1

max
fX(x)

I(X[k];Y[k])

=
1

K

K
∑

k=1

log2 det

(

IM +
Es

Nσ2
H[k]H[k]H

)

. (37)
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Figure 4: MIMO capacity in fading channels [5].

Based on the law of large numbers as K → ∞ this approaches the expectation value of the right

hand side in Eqn. (36) [4]

C = E

{

log2 det

(

IM +
Es

Nσ2
HHH

)}

. (38)

If {d2
m, m = 1, 2, . . . , M} are the M eigenvalues of HHH , the eigenvalues of

(

IM + Es/(Nσ2)HHH
)

are 1 + Es/(Nσ2)d2
m. The capacity in Eqn. (38) is then

C = E

{

M
∑

m=1

log2

(

1 +
Es

Nσ2
d2

m

)

}

, (39)

where the expectation is taken over the M eigenvalues.

This result in Eqns. (38) and (39) is valid for any type of fading. Specializing this to the case

of completely independent Rayleigh fading from each transmit element to each receive element,

each individual entry in H is an independent complex Gaussian random variable. In this case, the

matrix HHH is Wishart distributed [6]. In addition, the pdf of its eigenvalues are known [5,7].

f(d2
1, . . . , d2

M ) =
1

MKM,N
e−

∑

M

m=1
d2

m

M
∏

m=1

(d2
m)N−M

∏

m<n

(

d2
m − d2

n

)2
, (40)

where KM,N is a normalizing factor and

C =
M
∑

m=1

E{d2
m}

{

log2

(

1 +
Esd

2
m

Nσ2

)}

, (41)

⇒ C = M

[

E{d2

1
} log2

(

1 +
Esd

2
1

Nσ2

)]

(42)
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Figure 5: Outage probability in fading channels [8].

where the final expectation is taken over the pdf of an individual eigenvalue, found by marginalizing

the multivariate pdf in Eqn. (40). The resulting capacity has been obtained by Telatar in [5] and

shown in Fig. 4. The figure plots the capacity (in b/s/Hz) versus M or N . The eight plots are for

different SNRs between 0dB and 35dB in steps of 5dB. Note the linear relationship between the

capacity and the number of transmit and receive channels.

There are two important results included in here, one positive, one cautionary. First, just as

when the channel is known at the transmitter, if the channel is Rayleigh and independent, it is

possible to have linear increases in capacity in fading channels as well. The second (cautionary)

result is that the increase is proportional to the minimum of the number of transmitters and

receivers, i.e., min(N, M). This has important implications in a cellular network - it is reasonable

to assume multiple elements at the base station. But, it is unlikely one could have more than one

or two elements in a handheld device. In this case, multiple antennas at one end will only provide

power gains, but not the parallel channels that provide large capacity gains.

The result in Eqn. (42) and Fig. 4 present the true capacity of a MIMO channel with independent

Rayleigh fading, i.e., it is theoretically possible to have error-free transmission with rate below this

capacity. Another figure of merit is outage probability such as derived in Eqn. (5) for SISO channels.

In [8], Foschini and Gans evaluate the outage probability under Rayleigh fading. One of their results

is shown in Fig. 5. Note the huge improvement in outage probability (here they plot the cumulative

distribution, which is (1 − Pout) by moving from a SISO channel to N = M = 2. With a SNR

of 21dB, the capacity of a SISO channel is larger than approximately 2.5b/s/Hz 96% of the time,

while for N = M = 2 the capacity is larger than approximately 8.5b/s/Hz 96% of the time.
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