
Abstract — We discuss and compare the most important detection techniques for MIMO spatial
multiplexing wireless systems, focusing on their performance and computational complexity. Our
analysis shows that the limited performance of conventional suboptimal detection techniques
is primarily caused by their inability to cope with poorly conditioned channels. The recently
proposed sphere projection algorithm is better suited to these channels and can achieve near-
optimal performance.

Index Terms — MIMO, spatial multiplexing, maximum likelihood detection, V-BLAST, sphere
decoding, nulling and cancelling.

Zusammenfassung — Wir diskutieren und vergleichen die Arbeitsweise, Leistungsfähigkeit und
Komplexität der wichtigsten Detektionsmethoden für Mehrantennen-Funkübertragungssysteme
mit räumlichem Multiplex. Unsere Analyse zeigt, dass die begrenzte Leistungsfähigkeit her-
kömmlicher suboptimaler Detektoren durch schlecht konditionierte Kanäle bedingt ist. Der
kürzlich vorgeschlagene Kugelprojektions-Detektor ist besser für diese Kanäle geeignet; seine Lei-
stungsfähigkeit kann jener des optimalen Detektors nahekommen.

Stichwörter — Mehrantennensysteme, MIMO, räumlicher Multiplex, optimaler Detektor, V-
BLAST, Kugel-Dekodierung, entscheidungsrückgekoppelter Detektor.
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Figure 1: Contour lines of the noise pdf as well as the ZF and ML decision regions in the ZF-equalized
domain for a (2, 2) channel and BPSK modulation: (a) “Good” channel realization with condition number
1.1, (b) “bad” channel realization with condition number 10.5 (the vector v indicates the dominant noise
direction).

Figure 2: SER-versus-SNR performance of various detectors for a (4, 4) MIMO channel using 4-QAM
data modulation: (a) Equalization-based detection in comparison with sorted/unsorted NC, (b) SPA
based on ZF detection in comparison with ZF, sorted NC, and ML.
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1 Introduction

Multiple-input multiple-output (MIMO) wireless communications systems employ multiple an-

tennas at the transmitter and receiver sides. They can yield significantly increased data rates and

improved link reliability (the latter due to spatial diversity) without additional bandwidth [1, 2].

High data rates can be realized by means of spatial multiplexing (e.g., the V-BLAST scheme

[1, 3]), where independent information streams are transmitted in parallel over different transmit

antennas. Consider a flat-fading MIMO channel with MT transmit antennas and MR ≥ MT

receive antennas (this will be briefly termed an (MT,MR) channel). This channel is part of a

spatial multiplexing system where the mth data symbol (or layer) dm is directly transmitted on

the mth transmit antenna. At a given time instant, this leads to the well-known baseband model

r = Hd + w , (1)

with the MT×1 transmit vector d
4

=
(

d1 d2 · · · dMT

)T
, the MR×MT channel matrix H, the MR×1

received vector r
4

=
(

r1 r2 · · · rMR

)T
, and the MR × 1 noise vector w

4

=
(

w1 w2 · · · wMR

)T
. The

(n,m)th entry of H, Hn,m = (H)n,m, is the complex-valued fading coefficient between the mth

transmit antenna and the nth receive antenna. The data symbols dm are drawn from a complex-

valued symbol alphabet A and are assumed zero-mean and independent with unit variance. The

noise components wm are assumed circularly symmetric complex Gaussian with variance σ2
w. The

channel H is assumed perfectly known at the receiver.

In a MIMO spatial multiplexing system, the maximum possible diversity is given by the number

of receive antennas MR. This maximum diversity is available if all channel coefficients Hn,m are

independent, because then each data symbol dm is transmitted over MR independent scalar fading

channels Hn,m, n = 1, . . . ,MR (cf. (1)). The larger MR, the smaller is the probability that all

these channels fade simultaneously, and thus the reliability of data detection can be improved.

If the available diversity is MR, the symbol error rate (SER) of the optimal maximum likelihood

(ML) detector decays like SNR−MR in the high-SNR regime [2, 4]. This corresponds to a slope of

−MR of the double-logarithmic SER-versus-SNR curve. In general, if the SER of some detector

decays like SNR−δ, δ ≤ MR, we say that the detector can exploit δth-order diversity.

The ML detector is optimal and fully exploits the available diversity. Unfortunately, the

computational complexity of a direct implementation of the ML detector grows exponentially

with the number of transmit antennas MT, and it may be too high already for moderate system

and constellation sizes [5]. Several efficient suboptimal detection techniques have therefore been

proposed or adapted from the field of multiuser detection [3, 6, 7]. Whereas these techniques are

much less computationally demanding than the ML detector, they are often unable to exploit a

large part of the available diversity, and thus their performance tends to be significantly poorer

than that of ML detection. An interesting alternative to suboptimal techniques is the Fincke-
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Phost sphere-decoding algorithm for ML detection [5, 8, 9] (hereafter abbreviated as FPSD). The

FPSD implements ML detection with significantly reduced average complexity; however, for a

specific channel realization its complexity may still be very high.

Here, we consider the major detection techniques for MIMO spatial multiplexing systems:

ML detection, equalization-based detection, nulling-and-cancelling, and FPSD. We discuss the

strengths and weaknesses of these techniques regarding performance and computational complex-

ity. We argue that the inferior performance of conventional suboptimal detection techniques is

caused by their inability to cope with “bad” (i.e., poorly conditioned) channel realizations. In

addition, bad channels lead to a high computational complexity of the FPSD. Motivated by these

insights, we finally consider the recently proposed sphere projection algorithm (SPA) [10]. The

SPA, by its design, is well suited to bad channels and thus can achieve near-ML performance at

a computational complexity comparable with that of nulling-and-cancelling detectors.

Our paper is organized as follows. In Section 2, we discuss conventional detection techniques as

well as the SPA. Section 3 provides simulation results for performance evaluation and comparison.

2 MIMO Detection Techniques

In this section, we first discuss major “classical” detection techniques for MIMO spatial multi-

plexing systems, namely, the (optimal) ML detector, the (suboptimal) equalization-based and

nulling-and-cancelling detectors, and the FPSD implementation of ML detection. We then study

the effects of bad channels on the performance of suboptimal detectors and discuss the SPA.

2.1 Maximum Likelihood Detection

ML detection is optimal in the sense of minimum error probability when all data vectors are

equally likely, and it fully exploits the available diversity. For our system model (1) and with the

assumptions made in Section 1, the ML detector is given by

d̂ML = arg min
d∈D

{

‖r − Hd‖2
}

. (2)

Here, D = AMT denotes the set of all possible transmitted data vectors d. The cardinality of D

is |D| = |A|MT and thus grows exponentially with MT.

ML detection corresponds to a nonconvex optimization problem because D is not a convex

set [11, 12]. Therefore, standard numerical algorithms for convex optimization are not applicable.

The straightforward solution of (2) by comparing ‖r − Hd‖2 for all d ∈ D has computational

complexity O(|A|MT), and in fact the complexity of ML detection may be excessive already for

moderate values of MT and constellation size |A|. The FPSD implementation of ML detection

will be discussed in Subsection 2.4.

4



2.2 Equalization-Based Detection

In linear equalization based detection, an estimate of the transmitted data vector d is formed as

y = Gr with an “equalization matrix” G. The detected data vector is then obtained as d̂ =

Q{y}, where Q{·} denotes componentwise quantization according to the symbol alphabet A.

For the zero-forcing (ZF) equalizer, G is given by the pseudo-inverse [13] of H, i.e., G = H# =

(HHH)−1HH . (For the last expression, we assumed that MR ≥ MT and that H has full rank.)

Thus, the result of ZF equalization (before quantization) is

yZF = H#r = (HHH)−1HHr = d + w̃ , (3)

which is the transmitted data vector d corrupted by the transformed noise w̃ = H#w. This

means that the interference caused by the channel H is completely removed (“forced to zero”).

However, in general the transformed noise w̃ = H#w is larger than w (“noise enhancement”);

this will be analyzed in Subsection 2.5. The ZF-equalized received vector yZF can be seen as

the solution to a relaxed ML problem (cf. (2)) where the data set D underlying ML detection is

relaxed to the convex set C
MT [12]:

yZF = arg min
y∈CMT

{

‖r − Hy‖2
}

.

The noise enhancement effect plaguing the ZF equalizer can be reduced by using the minimum

mean-square error (MMSE) equalizer G =
(

HHH + σ2
wI

)−1
HH , which is the G minimizing the

mean-square error E
{

‖Gr − d‖2
}

[14]. Thus, the result of MMSE equalization is

yMMSE =
(

HHH + σ2
wI

)−1
HH r .

This can again be seen as the solution to a relaxed ML problem, with the distance ‖r − Hy‖2

augmented by a penalty term σ2
w‖y‖

2 that prevents y from growing too large [12]:

yMMSE = arg min
y∈CMT

{

‖r − Hy‖2 + σ2
w‖y‖

2
}

.

There also exist more sophisticated detection techniques based on the principle of relaxing the

ML problem (e.g., semidefinite relaxation as proposed in [12] for multiuser detection).

While ZF or MMSE equalization alone does not, in general, imply a loss of information (i.e.,

an optimal detector could still be based on yZF or yMMSE), the subsequent componentwise quan-

tization of yZF or yMMSE is suboptimal since it does not take into account the correlation of

the components of the transformed noise w̃. In fact, ZF or MMSE detection can only exploit a

diversity of order MR − MT + 1 [4]. On the other hand, the computational complexity is rather

low. The task with highest complexity is the calculation of the equalizer matrix G. Thus, if we

assume MT = MR for simplicity, the complexity behaves as O(M 3
T). Note that MMSE detection

is different from ML or ZF detection in that it requires an estimate of the noise variance.

5



2.3 Nulling-and-Cancelling

Nulling-and-cancelling (NC) is a recursive detection technique using the decision-feedback princi-

ple [3]. At each detection step, a single data vector component is detected and the corresponding

contribution to the received vector r is subtracted from r; the other components that have not

yet been detected are “nulled out” (equalized) using a ZF or MMSE equalizer.

Let us consider the first detection step. Equalization-based detection of the m1th data vector

component (m1 ∈ {1, . . . ,MT}) yields d̂m1
= Q

{

(Gr)m1

}

, where G is the ZF or MMSE equalizer

matrix. NC then attempts to clean r from the interference caused by dm1
by forming

r(2) = r − hm1
d̂m1

,

where hm1
denotes the m1th column of the channel matrix H. If d̂m1

is correct, i.e., d̂m1
= dm1

,

we obtain the reduced system model

r(2) = H(2)d(2) + w , (4)

where the reduced channel matrix H(2) of size MR×(MT−1) is H with the m1th column removed

and the reduced data vector d(2) of size MT − 1 is d with the m1th component removed. Because

in the reduced system model (4) MT is replaced by MT − 1, equalization-based detection applied

to r(2) can now exploit one additional degree of diversity.

At the second decoding step, another data vector component dm2
is detected by applying

equalization-based detection to r(2). The result is d̂m2
= Q

{

(G(2)r(2))m2

}

, where G(2) denotes

the ZF or MMSE equalizer matrix corresponding to H(2). The interference caused by d̂m2
is then

subtracted from r(2) by forming

r(3) = r(2) − hm2
d̂m2

.

This recursive detection-and-interference-cancellation procedure is continued until all MT data

vector components have been detected.

It is seen that NC attempts to progressively clean r from the interference caused by the

components already detected. At each new detection step, additional degrees of diversity become

available provided that all previous decisions were correct. The performance of NC depends

crucially on the order in which the data vector components are processed. To minimize error

propagation effects and to improve the detection of unreliable components through the additional

degrees of diversity that become available in the reduced system models, more reliable data vector

components should be detected first. Usually, at each decoding step the row norms of the equalizers

G(l) or the componentwise post-equalization SNRs are used as measures of reliability [3, 15, 16].

The performance of NC is significantly improved by such a layer-sorting procedure, although it is

still poorer than that of ML detection. A “dynamic” layer-sorting strategy that leads to a further

substantial performance improvement has recently been proposed [17].
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The maximal diversity order that can be exploited by NC is MR − MT + 1, the same as for

equalization-based detection [4, 18]. This is because the diversity exploited by NC is limited

by the first step of the detection process, which is equalization-based detection applied to the

full system model and thus has diversity order MR − MT + 1. In the practically relevant SNR

regime (not extremely high SNRs), however, higher slopes of the SER-versus-SNR curve can be

achieved. The computational complexity of NC is dominated by the calculation of the equalizers

G(l), l = 1, . . . ,MT. If we assume MT = MR for simplicity, the complexity of a straightforward

implementation of NC behaves as O(M 4
T). However, this can be reduced to O(M 3

T) by using the

algorithm of [15] or the recursive implementation of [19].

2.4 The Fincke-Phost Sphere Decoding Algorithm

The Fincke-Phost sphere decoding (FPSD) algorithm [8] for ML detection allows the efficient

determination of all data vectors d ∈ D for which Hd lies within a hypersphere with given radius

r about the received vector r, i.e.,

‖r − Hd‖2 < r2. (5)

If there are any d’s inside this hypersphere, the ML solution d̂ML must be one of them because

Hd̂ML is closest to r (cf. (2)). To find d̂ML, it then suffices to calculate and minimize ‖r−Hd‖2

for the data vectors produced by the FPSD, which implies a substantial reduction of complexity.

We can rewrite (5) as [15]

(d − yZF)HHHH(d − yZF) < r̃2, with r̃2 4

= r2 − ‖r‖2 + ‖HyZF‖
2 , (6)

where, as before, yZF = (HHH)−1HHr is the result of ZF equalization. With the QR decompo-

sition [13] H = QR, where Q is unitary and R is upper triangular, (6) becomes

(d − yZF)HRHR(d − yZF) = ‖R(d − yZF)‖2 < r̃2 ,

or equivalently
MT
∑

m=1

∣

∣

∣

∣

MT
∑

i=m

Rm,i(di − yZF,i)

∣

∣

∣

∣

2

< r̃2 , (7)

with Rm,i = (R)m,i. Evidently, a set of necessary conditions for (7) is given by the fact that

all the partial sums of the outer sum in (7) must be smaller than r̃2. One of these necessary

conditions involves just the data vector component dMT
:

R2
MT,MT

|dMT
− yZF,MT

|2 < r̃2.

If for a specific dMT
= a ∈ A this condition is not satisfied, then we can discard all d’s with

dMT
= a (the corresponding vectors Hd lie outside the hypersphere). If the condition is satisfied,
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however, then all d’s with dMT
= a remain possible candidates, and we can invoke another

necessary condition that involves also dMT−1:

∣

∣RMT−1,MT−1(dMT−1 − yZF,MT−1) + RMT−1,MT
(a − yZF,MT

)
∣

∣

2
< r̃2 − R2

MT,MT
|a − yZF,MT

|2 .

Again, if for a specific dMT−1 = a′ ∈ A this condition is not satisfied, we can discard all d’s with

dMT−1 = a′, etc. This procedure is continued until the last condition (which is the necessary and

sufficient condition (7) itself) is checked. The d’s that survive this last check are all the data

vectors inside the hypersphere. They represent a reduced search set for the ML solution, i.e.,

minimizing ‖r−Hd‖2 over this set yields the ML solution. For a convenient tree representation

of this procedure see e.g. [20].

An appropriate choice of the hypersphere radius r is of crucial importance. If r is too small,

we will not find any data vector inside the hypersphere; the reduced search set thus is empty

and the ML solution cannot be provided. If r is too large, the reduced search set will be very

large and thus the computational complexity of the subsequent search for the ML solution will

be excessive. Usually, r is adjusted according to the noise variance (e.g. [5, 21, 22]). Each time

the FPSD produces an empty search set, it has to be restarted with a larger radius.

The computational complexity of the FPSD implementation of the ML detector is strongly

dependent on the channel realization and the SNR. The average complexity (i.e., averaged over

a sufficient number of channel realizations) is exponential in MT [9] just as the complexity of

the straightforward implementation of the ML detector (cf. Section 2.1); however, for sufficiently

large SNR it behaves polynomially in MT as long as MT is not too large [5]. Unfortunately, for

specific channel realizations the complexity may still be very high.

2.5 The Sphere Projection Algorithm

In the case of a “good” MIMO channel—i.e., a channel whose condition number1 is near to

one—, the performance of the suboptimal detectors (ZF, MMSE, and NC) is very close to ML

performance and the FPSD implementation of the ML detector is very efficient. However, for a

“bad”—i.e., poorly conditioned—MIMO channel, the suboptimal detectors perform quite poorly

and the FPSD has high complexity [8]. The sphere projection algorithm (SPA) [10] is motivated

by the observation that the inferior average performance of the standard suboptimal detectors is

mainly caused by the occurrence of bad channel realizations.

The effect of bad channels is best seen from the ZF-equalized vector yZF = d+w̃ (see (3)). The

transformed noise vector w̃ is correlated according to the covariance matrix Rw̃ = σ2
w(HHH)−1,

which implies a distortion of the noise probability density function (pdf) relative to the spherical

pdf geometry of the original noise w. More specifically, the contour surfaces of the pdf of w̃

1The condition number of the channel matrix H is the ratio of the largest and smallest singular values of H.
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Figure 1: Contour lines of the noise pdf as well as the ZF and ML decision regions in the ZF-
equalized domain for a (2, 2) channel and BPSK modulation: (a) “Good” channel realization with
condition number 1.1, (b) “bad” channel realization with condition number 10.5 (the vector v

indicates the dominant noise direction).

are hyperellipsoids [23] instead of hyperspheres as for w. This distortion becomes stronger with

increasing channel condition number. For illustration, Fig. 1 shows the pdf of yZF for a good

and a bad realization of a real-valued (2, 2) channel. The modulation format is BPSK. Also

shown are the ZF decision regions (the four quadrants) and the ML decision regions (indicated

by dash-dotted lines). For the good channel, the ZF and ML decision regions are quite similar;

for the bad channel, however, they are very different. The decision regions of the MMSE and

NC detectors (again represented in the ZF domain, not shown in Fig. 1) are somewhat better

matched to the distorted pdf of w̃ than the ZF decision regions but still very different from the

ML decision regions [10].

The SPA is a simple nonlinear add-on to an arbitrary suboptimal detector that significantly

increases that detector’s robustness to bad channels. The basic idea is as follows. Recall from (2)

that the ML detector would minimize ‖r−Hd‖2 over the entire data vector set D. Let d̂sub∈D

denote the result of the given suboptimal detector. This result can be expected to be reasonably

good for good channels. In order to improve the result for bad channels, we use an additional

set D+ ⊂ D of valid data vectors d that are potentially better than d̂sub in the sense of smaller

‖r − Hd‖2. We then minimize ‖r − Hd‖2 over the combined search set DSP consisting of d̂sub

and all data vectors in D+:

d̂SP
4

= arg min
d∈DSP

{

‖r−Hd‖2
}

, with DSP
4

= {d̂sub} ∪ D+ . (8)

For the construction of D+, it is assumed that in the ZF domain there is a single dominant

noise component, as indicated in Fig. 1(b) by the vector v. Since a bad channel is assumed, this

dominant noise component in the direction of v is much larger than all other noise components.

Therefore, it makes sense to exclude the dominant noise direction in all distance calculations.
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Furthermore, to simplify things, we will do as if all the other (nondominant) noise components

had equal variance. With these approximations, it can be shown [10] that a data vector d has a

small distance ‖r − Hd‖2 if and only if it is close to the straight line

L : y(k)
4

= k v + yZF , k ∈ C ,

i.e., the line parallel to the dominant noise axis v that passes through yZF. In fact, if all non-

dominant noise components were exactly zero, L would pass right through the transmitted data

vector d.

Let us assume a constant-modulus symbol alphabet such as a PSK constellation (the SPA can

be extended to more general alphabets but its complexity will be larger). All data vectors d then

are located on an MT-dimensional data hypersphere H about the origin. According to the above

discussion, the data vectors in D+ should be close to the line L. The intersection between L and

H—if it is nonempty—is a circle in the real plane corresponding to the (complex) line L. We

choose D+ to consist of all data vectors whose ZF decision (or quantization) regions are pierced

by this intersection circle, since these vectors are close to L. If L and H do not intersect, we

choose D+ to consist of the data vector closest to L and all its nearest neighbors. A detailed

discussion of the construction of D+ is given in [10].

Simulation results (see Section 3) indicate that the SPA combined with a suitable suboptimal

detection technique exploits a large part of the available diversity. In fact, for practically relevant

system sizes the SPA can get very close to ML performance. The SPA is more complex than

the standard suboptimal techniques due to the construction of D+ and the minimization in (8).

However, the extra complexity is moderate because these additional operations can be performed

very efficiently [10]. When combined with the ZF or MMSE detector or an efficient implementation

of the NC detector [15, 19], the complexity of the SPA is O(M 3
T) [10].

3 Simulation Results

Next, we present simulation results in order to assess and compare the error-rate performance

and computational complexity of the various detection techniques. We used 4-QAM modulation

and a (4, 4) MIMO channel with iid Gaussian entries. Fig. 2 shows the SER-versus-SNR per-

formance2 of the various detectors, with part (a) focusing on the comparison of ZF and MMSE

detection, unsorted NC, and sorted NC (using the sorting strategy proposed in [3]) and part (b)

comparing the performance of various suboptimal techniques (including the ZF-based SPA) with

ML performance. The following conclusions can be drawn from these results.

2The SNR is defined as E{‖Hd‖2}/E{‖w‖2} = MT σ2

d
(recall that σ2

w
= 1).
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Figure 2: SER-versus-SNR performance of various detectors for a (4, 4) MIMO channel using
4-QAM data modulation: (a) Equalization-based detection in comparison with sorted/unsorted
NC, (b) SPA based on ZF detection in comparison with ZF, sorted NC, and ML.

• Unsorted NC based on ZF and MMSE equalization outperforms pure ZF and MMSE de-

tection, respectively.

• Component sorting for NC can yield large performance improvements for SNRs above 10 dB,

especially for MMSE-based NC. Nevertheless, sorted NC cannot exploit all of the available

diversity.

• ML detection fully exploits the available diversity of order 4.

• The ZF-based SPA almost achieves ML performance and exploits almost all of the available

diversity.

A rough picture of the complexity of the various detectors that complements the asymptotic

O(·) results presented in Section 2 can be obtained by measuring the kflops required by MATLAB

V5.3 implementations. In the simulation study described above, the direct implementation of
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ML detection required 43 kflops. The FPSD implementation of ML detection required only 5.2

kflops on average (at an SNR of 10 dB); however, the worst-case complexity (measured during

10000 simulation runs) was 26.7 kflops. Hence, on average the FPSD is far more efficient than

a direct ML implementation, but in the worst case the computational savings may be moderate.

Pure ZF and MMSE detection (2.3 kflops) and ZF- and MMSE-based NC using the efficient

implementation in [19] (2.9 kflops) are much less complex than the FPSD. Finally, the average

complexity of the ZF-based SPA (4.1 kflops) is similar to the average complexity of the FPSD;

however, its worst-case complexity (5.1 kflops) is roughly 5 times smaller than the worst-case

complexity of the FPSD even though the SPA achieves near-ML performance. For system sizes

larger than the (4, 4) case considered, the suboptimal techniques achieve larger computational

savings relative to the ML detector but their performance loss becomes larger as well; this is also

true for the SPA.

4 Conclusions

We have studied and compared the most important classical detection techniques for MIMO

spatial multiplexing systems, focusing on their error performance and computational complexity.

In particular, we have highlighted the degrading influence that “bad” (i.e., poorly conditioned)

channels exert on classical suboptimal techniques: either the performance is reduced, or the

computational complexity is increased. This motivated a discussion of the recently introduced

sphere projection algorithm (SPA), which is an add-on to conventional suboptimal techniques

resulting in significantly improved robustness to bad channels. Simulation results allowed a

performance comparison of the various detectors and showed that SPA-enhanced techniques can

almost achieve optimal performance and exploit a large part of the available diversity.
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