Object Oriented
programming using C++

File Handling

Chiranjiv Bharati School Palam Vihar

INTRODUCTION

A program typically involves either or both of
the following kinds of data communication:

o Data transfer between the console unit and
the program.

o Data transfer between the program and a
disk file.

INTRODUCTION

o Afile Is a collection of related data stored In
a particular area on the disk. Program can
be designed to perform the read and write
operation on these data

WHY TO USE FILES:

-.Convenient way to deal large quantities of data.
-Store data permanently (until file is deleted).
-Avoid typing data into program multiple times.
-Share data between programs.

We need to know:

vhow to "connect" file to program

vhow to tell the program to read data

vhow to tell the program to write data

verror checking and handling EOF

Chiranjiv Bharati School Palam Vihar

THE HEADER FILE

»Streams act as an interface between files and programs.

»They represent as a sequence of bytes and deals with
the flow of data

»File - Program (Input stream) - reads
»Program -> File (Output stream) - write

Chiranjiv Bharati School Palam Vihar

Input

Stream

A 4

Program

A

Files

A 4

Output

Stream

A

|

ifstream fstream ofstream

filebuf

fstreambase

“ Classesderfilesstiieam.eperations *

ifstream fstream ofstream

fstreambase

“ Classes for file stream operations “

nereyg Alluenyd

filebuf

/O STREAMS

Stream Description

cin Standard input
stream

cout Standard output

Sstream

FILE I/O STREAMS

Stream Classes required for File i/o :
o Ifstream
o ofstream
o fstream

FSTREAM

o It supports files for simultaneous input and output
operation
o open() is a member function of the class fstream

o fstream Is derived from
e |OStream

FSTREAM

o Member functions of the class fstream

e open

e close

e close all

e seekg

e seekp

e tellg

e tellp

FILE HANDLING CLASSES

e \When working with files in C++, the following
classes can be used:

- ofstream - writing to a file
- Ifstream - reading from a file

- fstream - reading / writing

OPENING & CLOSING A FILE

If we want to use a disk file, we need to
decide the following thing about the file and
Its iIntended use:

o Suitable name for the file
o Structure for the file

o Purpose

o Opening method

OPENING A FILE

A file can be opened in two ways:-

o Using the constructor of the class.
o Using the member function open() of the class.

OPENING FILE USING CONSTRUCTOR

o Create a file stream object to manage the stream
using the appropriate class.

o the class ostream is used to create the output
stream and the class istream to create the input
stream.

o Initialize the file object with the desired filename.

OPENING FILE USING CONSTRUCTOR - SYNTAX

ofstream outfile (“ result.doc”);

The above statement open a file named “result ” for output.

Ifstream infile (“ data.doc”);

JeUYIA Weped [00ydS reseyg Alfueayd

The above statement open a file named “result ” for input.

OPENING FILE USING CONSTRUCTOR

Data output to a file can also be performed in the same way that we

did with cout

Jfowriting on a text file
#include <iostrean-
#include <fstrean

using hamespace std;

int main [) !

ofstrean wyfile ("example. txt");

1f (myfile.1s open(]]

{
wyfile << "This ig a line.\n";
uyfile <{ "This i3 another line.\n";
wyfile.cloge(];

;

elze cout < "Unable to open file";

return 0;

}

[file exauple,txt]
Thiz iz a line.
This 17 another line,

JeyIA Wwefed |00YdS eseyg Alfuesiyd

Opening File using constructor

Data input from a file can also be performed in the same way that
we did with cin

A reading a text f£ile
#ginclude <iostreans-
ginclude «<fstream-
ginclude <string-
using namespace std;

O

=,

o

=,

int main () { <

. . 03]

string line; . | >

ifatream myfile (["example.txt'™): This iz & line, 3

if (wyfile.is openi)] Thiz iz another line. o

{ =

while (! myfile.eofi(]) o

{ &

getline (myfile,line):; %

cont << line << endl: <

/ 3]
myfile.clozel];

}

elze cout << "Unable to open f£ile™;

return 0O;

OPENING FILE USING CONSTRUCTOR

#include <fstream.h>

Void main()

{
char name[30];
float cost;
ofstream outfile(*ITEM”);
cout<< “ Enter item name”;
cin>> name;
outfile << name << “\n”;
cout<< “ Enter item cost”;
cin>> cost;
outfile << cost<< “\n”;
outfile.close();

Ifstream infile(“ITEM”);
infile >> name;
infile >> cost;

cout << “ item name” <<
name <<“\n”;

cout << “ item cost” << cost
<<H\n”;
Infile.close();

JeUYIA Weped [00ydS reseyg Alfueayd

OPENING FILE USING CONSTRUCTOR

o When a file is opened for writing only, a new file
IS created If there is no file of that name.

o If a file by that name exist already, then its
contents are deleted and the file is presented as
a clean file.

o We shall discuss later how to open an existing
file for updating it without losing its original
contents.

OPENING FILE USING OPEN()

File-stream-class stream-object;
Stream-object .Open(“ filename ”);

Example:

ofstream outfile;
outfile .open() (“ result.doc”);

outfile.close();
outfile.open(” Data.txt”);

outfile.close();

THIS CODE CREATES A FILE CALLED EXAMPLE.TXT AND INSERTS A SENTENCE
INTO IT IN THE SAME WAY WE ARE USED TO DO WITH COUT, BUT USING THE
FILE STREAM MYFILE INSTEAD.

// basic file operationg
ginclude <iostrean:
#include <fstreans |
. [f}lg example.txt] .
uSlnq namEspaEE St-lj.; Writing this to a file

int main f) {
ofstrean nyfile;
uyfile, open |"exauple. txt”);
uyfile << "Uriting this to a file.\n";
wyfile.close(];
return 0;

Jeyi/ weped [00yds reseyg AlueyD

——

OPENING FILE USING OPEN()

Void main()

{

ofstream fout;

fout.open(* country”);

fout << * United states of America
\n™:

fout << “ United kingdom \n”;

fout << * south Korea \n”;

fout.close();

fout.open(* Capital ”);
fout<< “ Washington \n”;
fout<< * London \n”;
fout<< “ Seoul \n”;
fout.close();

char line [80];

Ifstream fin;
fin.open(“ country ”);
cout << “ contents of country file”

while (fin) 5
(

fin.getline (line, 80); 2

cout<< line; 2
} 0
fin.close(); 3
fin.open(* Capital "); s
cout << “ contents of capita file” ; %
while (fin) =
{

fin.getline (line, 80);

cout<< line: @
}

fin.close();

OPENING FILE USING OPEN()

Contents of country file
united states of America
united kingdom

south Korea

Contents of capital file
Washington

London

seoul

OPENING MORE THEN ONE FILE

SIMULTANEQUSLY

Void main()

{

const int size=80;

char line [size J;
ifstream finl, fin2;
finl.open(* country ”);
fin2.open(* capital ”);
for (inti=1; i<=10; i++)

{

if(finl.eof () !=0)

{

cout << “ Exit from country”;

exit (1);
}

finl.getline(line, size);

cout << “ capital of ” << line ;

if(fin2.eof () 1=0)
{

cout << “ Exit from capital”;

exit (1);

}

fin2.getline(line, size);
cout << line ;

}

JeUYIA Weped [00ydS reseyg Alfueayd

OPENING MORE THEN FILE SIMULTANEQUSLY

Output-

Capital of united states of America
Washington

Capital of united kingdom

London

Capital of south Korea

seoul

OPENING A FILE WITH DIFFERENT MODES

stream-object.open(“filename”, mode);

o filename —file to open (full path or local)

* mode —how to open (specifies the purpose for which
the file is opened)

OPENING A FILE WITH DIFFERENT MODES

olos::app — append
olos::ate — open with marker at the end of
the file

olos::in /ios::out — (the defaults of ifstream
and ofstream)

olos:nocreate / ios::noreplace —open only if
the file exists / doesn’t exist

olos::trunc — open an empty file
olos::binary — open a binary file (default is
textual)

Don’t forget to close the file using the method
“close()”

class |default mode parameter
aofstream|ios: :out
Ifstream |las::in
festream |los::in | 1os::out

@)
=,
o
=.
=
o8]
>
o
o
=,
w
o)
=
o)
<3
U
=3
o
3
<
=
)

ofstream wytile;
nytile.open (“example.bin”, logiiout | los:iapp | 103::binary);

FILE POINTERS AND THEIR MANIPULATIONS:

Each file has two associated pointers known as the
file pointers.

One of them is called the input pointer or get
pointer.

Other is called the output pointer or put pointer.

We can use these pointers to move through the
files while reading or writing.

The input pointer is used for reading the contents of
a given file location and the output pointer Is used
for writing to a given file location.

FUNCTIONS FOR MANIPULATION OF FILE POINTERS

seekg() Moves get pointer (input) to a specified location.
seekp() Moves put pointer (output) to a specified location.
tellg() Gives the current position of the get pointer.

tellp() Gives the current position of the put pointer.

FUNCTIONS FOR MANIPULATION OF FILE POINTERS

infile.seekg(10);

o Moves the file pointer to the byte number 10.

o The bytes in a file are numbered beginning from
Z€ero.

o Thus, the pointer will be pointing to the 11th byte In
the file.

Ofstream outfile;
Outfile.open(“ hello”, ios::app);
Int p= oultfile.tellp();

SPECIFYING THE OFFSET .

The seek functions seekg() and seekp() can also be used with two
arguments as follows:

seekg (offset, refposition);
seekp (offset, refposition);

The parameter offset represents the number of bytes the file pointer to
be moved from the location specified by the parameter refposition.
The refposition takes one of the following these constant defined in the
l0s class.

l0s::beg start of the file
loSs::cur current position of the pointer
los::end end of the file.

WRITE () AND READ () FUNCTION

Infile. Read ((char *) &V, sizeof (v));

outfile. write ((char *) & V, sizeof (v)),

WRITE () AND READ () FUNCTION

#include<iostream.h>
#include<fstream.h>

#include<iomanip.h>
Int main()

{

float
ht[4]={12.3,15.3,34.7,12.8};

ofstream oultfile;

outfile.open("myfile",ios::binary
);

outfile.write((char
*)&ht,sizeof(ht));

outfile.close();
for(int i=0;i<4;i++)
{

ht[i]=0;

Ifstream infile;
Infile.open("myfile");

Infile.read((char
*)&ht,sizeof(ht));

for(i=0;i<4;i++)
{
cout.setf(ios::showpoint);

cout<<setw(1l0)<<setprecision
(2) <<ht]i];

}

Infile.close();
Return O;

}

JeUYIA Weped [00ydS reseyg Alfueayd

WRITING AND READING OBJECTS OF A CLASS :

So far we have done I/O of basic data types. Since the class objects
are the central elements of C++ programming, it is quite natural that
the language supports features for writing and reading from the disk
files objects directly.

The binary input and output functions read() and write() are designed
to do exactly this job.

The write() function is used to write the object of a class into the
specified file and read() function is used to read the object of the
class from the file.

Both these functions take two arguments:

1. address of object to be written.

2. size of the object.

The address of the object must be cast to the type pointer to char.

One important point to remember is that only data members are
written to the disk file and the member functions are not.

WRITING AN OBJECT INTO THE FILE

#include void main()

class Person { R

{ Person per ; // Define an object =
private: per.getData(); 2
char name[40]; >
Int age,; ofstream outfile("Person.txt”); // Opgn
public: the file in output mode g
void getData() S,

outfile.write((char*)&per, sizeof(pery);

cout << "\n Enter name:”, /I Write the object into the file 3
cin >> name; } =
cout << “\n Enter age:”; &
cin >> age;
}

}; /I End of the class definition

READING AN OBJECT INTO THE FILE

int n = endposition / sizeof(person);
class person

{ cout << *“\n There are “ << n <<*
private: persons in file: %

char name[40];
int age; cout << “\n Enter person number:
public: cin >>n;

void showData() _

int position = (n-1) *sizeof(person);
cout << “\n Name = * << name;
cout << “\n Age = “ << age;

JeyIA Wwefed [00YdS 1eseyg Alfuesiyd

1 infile.seekg (position);
% -
_ _ infile.read((char*)&pers,
void main() sizeof(pers));
{
person pers; pers.showData();
ifstream infile; }

infile.open(“Person.txt”);
infile.seekg(O, ios::end);
int endposition = infile.tellg();

