Yum-Yum Physics!



By the Work-Energy Theorem:

W = KE
In this case, we will consider PE = 0 so:
W =KE=E
From the definition of work:
W = F(Ax)
E = F(AX)

Therefore: FE = I F dx
0



From Newton’s original statement of F=ma.

dm dv
F=—V+m—
dt dt

d
F=—(mv
o )

This, along with the previous equation yields:

E = [ Fdx

0
j 2 (mv)dx
) dt



We have dt and dx in the equation.
Let’s write it all in terms of dt:

AX  dx
V=—=—
At dt
dx = vdt

When the variable changes from dx to dt,
we must also change the bounds of the integral

¢ d ¢ d
E=|—(mv)dx=|—(mv)vdt
!dt( ) {dt< )



We can eliminate the dt's so:

my

E = j;%(mv)vdt = Jvd(mv)

0
Notice that the dt changed to d(mv) so the bounds also changed
For velocities approaching c, the mass increases

L . L
The relativistic mass is: M= 5

E — nj-vvd(mv) _ Tvd( ==
0 0

)
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Since m, Is a constant, it can factored out of the

| integral:
A mv m.v v v
E=[vd(==)=m, | vd( )
0 v 0 v
-, 1

Applying the Quotient Rule:
(keep In mind v Is a variable and c is a constant)
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Combining these expressions for Energy yields:
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To get a common denomlnator we will multlply the numerator

: iy > (1—*)
“and de‘n—ommator of 1Y by
c’ (1_V)
V3
E=m, [ (——+ 23)dv
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To evaluate the integral we make the substitution:

i u=c’—v’

d_u = —2vdv
dv

—ldu = vdv
2

v

Therefore: E:mocsj e -

0 (C2 . VZ)E
1
u(v) —Edu
3
E=m,C j 2
u(v=0) UE
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u(v) —2du
3
E=mc® | 5
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E =
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E = m.c( C 3 Je2 =2
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CZ(\/CZ—V .
E=m, 1 2
CZ(l\/CZ_V )
m, 1
E= Cl VZ)
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E=mc’( ~1)
0] V2
(1—C2)
m
E = c*( 0v2 -m,)
(1—C2)
mO

Recall the relativistic mass: M= ¥
\/ 1-—)
C

Substituting this yields: E = ¢*(m—m,)

or E=(m-m)c’
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Make

everything
as simple as
possible,
but not

simpler!
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Second Derivation



~ Consider a box with a light source of

'negligible mass at the left end and a black

~absorber of negligible mass at the other

—end. The total mass of the box, source,

~and absorber is M. a Photon is emitted

from the left. It strikes the absorber and
IS absorbed.

Box, mass = M

Souree Absorber
>

photon




- By conservation of momentum,
~ Wwhen the photon leaves the
~source, and travels right, the box
must move to the left to maintain
a total momentum of O In the
system. We will use two methods
to calculate how far the box
moves, and equate the results.



The energy of a photon is given by:

E:hf:E
A

From de Broglie’s Equation:
h h

Thus: e E



By the Law of Conservation of Momentum, the momentum
- of the photon equals the momentum of the box

E
p=MV =—
C

vt
Mc

From its definition, the velocity of the photon is given
by the displacement divided by the time



The velocity of the box is: V = Ve

_ ';,Th_e”"’amount of time that the box moves is:

The distance the box moves is:

d =Wt
E L

d=——
Mc C

4 EL

Mc?



Frth""the mass-energy equivalence, the photon has
~mass'since it has energy. Let this mass be m (m<<M).

. Since there is no external force on the system, the
=<~ center of mass must remain in the same place.
Therefore the moments of the box and photon must
have the same value:

Md = mL

gL
M



| Equating the two expressions for d yields:

mL EL

d: = >
M Mc




