
2 The Decision
 Control Structure

• Decisions! Decisions!
• The if Statement

The Real Thing
Multiple Statements within if

• The if-else Statement
Nested if-elses
Forms of if

• Use of Logical Operators
The else if Clause
The ! Operator
Hierarchy of Operators Revisited

• A Word of Caution
• The Conditional Operators
• Summary
• Exercise

49

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

50 Let Us C

e all need to alter our actions in the face of changing
circumstances. If the weather is fine, then I will go for a
stroll. If the highway is busy I would take a diversion.

If the pitch takes spin, we would win the match. If she says no, I
would look elsewhere. If you like this book, I would write the next
edition. You can notice that all these decisions depend on some
condition being met.

W
C language too must be able to perform different sets of actions
depending on the circumstances. In fact this is what makes it worth
its salt. C has three major decision making instructions—the if
statement, the if-else statement, and the switch statement. A
fourth, somewhat less important structure is the one that uses
conditional operators. In this chapter we will explore all these
ways (except switch, which has a separate chapter devoted to it,
later) in which a C program can react to changing circumstances.

Decisions! Decisions!
In the programs written in Chapter 1 we have used sequence
control structure in which the various steps are executed
sequentially, i.e. in the same order in which they appear in the
program. In fact to execute the instructions sequentially, we don’t
have to do anything at all. By default the instructions in a program
are executed sequentially. However, in serious programming
situations, seldom do we want the instructions to be executed
sequentially. Many a times, we want a set of instructions to be
executed in one situation, and an entirely different set of
instructions to be executed in another situation. This kind of
situation is dealt in C programs using a decision control
instruction. As mentioned earlier, a decision control instruction
can be implemented in C using:

The if statement (a)
(b)
(c)

The if-else statement
The conditional operators

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 51

Now let us learn each of these and their variations in turn.

The if Statement
Like most languages, C uses the keyword if to implement the
decision control instruction. The general form of if statement looks
like this:

if (this condition is true)
 execute this statement ;

The keyword if tells the compiler that what follows is a decision
control instruction. The condition following the keyword if is
always enclosed within a pair of parentheses. If the condition,
whatever it is, is true, then the statement is executed. If the
condition is not true then the statement is not executed; instead the
program skips past it. But how do we express the condition itself
in C? And how do we evaluate its truth or falsity? As a general
rule, we express a condition using C’s ‘relational’ operators. The
relational operators allow us to compare two values to see whether
they are equal to each other, unequal, or whether one is greater
than the other. Here’s how they look and how they are evaluated in
C.

 this expression is true if

 x == y x is equal to y
 x != y x is not equal to y
 x < y x is less than y
 x > y x is greater than y
 x <= y x is less than or equal to y
 x >= y x is greater than or equal to y

Figure 2.1

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

52 Let Us C

The relational operators should be familiar to you except for the
equality operator == and the inequality operator !=. Note that = is
used for assignment, whereas, == is used for comparison of two
quantities. Here is a simple program, which demonstrates the use
of if and the relational operators.

/* Demonstration of if statement */
main()
{
 int num ;

 printf ("Enter a number less than 10 ") ;
 scanf ("%d", &num) ;

 if (num <= 10)
 printf ("What an obedient servant you are !") ;
}

On execution of this program, if you type a number less than or
equal to 10, you get a message on the screen through printf(). If
you type some other number the program doesn’t do anything. The
following flowchart would help you understand the flow of control
in the program.

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 53

INPUT num

 is
num > 10

yes no

PRINT What an obedient
servant you are !

PRINT enter a num
less than 10

STOP

START

Figure 2.2

To make you comfortable with the decision control instruction one
more example has been given below. Study it carefully before
reading further. To help you understand it easily, the program is
accompanied by an appropriate flowchart.

Example 2.1: While purchasing certain items, a discount of 10%
is offered if the quantity purchased is more than 1000. If quantity
and price per item are input through the keyboard, write a program
to calculate the total expenses.

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

54 Let Us C

INPUT
qty, rate

 is
qty > 1000

dis = 10

yes

tot = qty * rate – qty * rate * dis / 100

PRINT
tot

no

STOP

dis = 0

START

Figure 2.3

/* Calculation of total expenses */
main()
{
 int qty, dis = 0 ;
 float rate, tot ;
 printf ("Enter quantity and rate ") ;
 scanf ("%d %f", &qty, &rate) ;

 if (qty > 1000)
 dis = 10 ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 55

 tot = (qty * rate) - (qty * rate * dis / 100) ;
 printf ("Total expenses = Rs. %f", tot) ;
}

Here is some sample interaction with the program.

Enter quantity and rate 1200 15.50
Total expenses = Rs. 16740.000000

Enter quantity and rate 200 15.50
Total expenses = Rs. 3100.000000

In the first run of the program, the condition evaluates to true, as
1200 (value of qty) is greater than 1000. Therefore, the variable
dis, which was earlier set to 0, now gets a new value 10. Using this
new value total expenses are calculated and printed.

In the second run the condition evaluates to false, as 200 (the value
of qty) isn’t greater than 1000. Thus, dis, which is earlier set to 0,
remains 0, and hence the expression after the minus sign evaluates
to zero, thereby offering no discount.

Is the statement dis = 0 necessary? The answer is yes, since in C, a
variable if not specifically initialized contains some unpredictable
value (garbage value).

The Real Thing

We mentioned earlier that the general form of the if statement is as
follows

if (condition)
 statement ;

Truly speaking the general form is as follows:

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

56 Let Us C

if (expression)
 statement ;
Here the expression can be any valid expression including a
relational expression. We can even use arithmetic expressions in
the if statement. For example all the following if statements are
valid

if (3 + 2 % 5)
 printf ("This works") ;

if (a = 10)
 printf ("Even this works") ;

if (-5)
 printf ("Surprisingly even this works") ;

Note that in C a non-zero value is considered to be true, whereas a
0 is considered to be false. In the first if, the expression evaluates
to 5 and since 5 is non-zero it is considered to be true. Hence the
printf() gets executed.

In the second if, 10 gets assigned to a so the if is now reduced to if
(a) or if (10). Since 10 is non-zero, it is true hence again
printf() goes to work.

In the third if, -5 is a non-zero number, hence true. So again
printf() goes to work. In place of -5 even if a float like 3.14 were
used it would be considered to be true. So the issue is not whether
the number is integer or float, or whether it is positive or negative.
Issue is whether it is zero or non-zero.

Multiple Statements within if

It may so happen that in a program we want more than one
statement to be executed if the expression following if is satisfied.
If such multiple statements are to be executed then they must be

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 57

placed within a pair of braces as illustrated in the following
example.

Example 2.2: The current year and the year in which the
employee joined the organization are entered through the
keyboard. If the number of years for which the employee has
served the organization is greater than 3 then a bonus of Rs. 2500/-
is given to the employee. If the years of service are not greater
than 3, then the program should do nothing.

/* Calculation of bonus */
main()
{
 int bonus, cy, yoj, yr_of_ser ;

 printf ("Enter current year and year of joining ") ;
 scanf ("%d %d", &cy, &yoj) ;

 yr_of_ser = cy - yoj ;

 if (yr_of_ser > 3)
 {
 bonus = 2500 ;
 printf ("Bonus = Rs. %d", bonus) ;
 }
}

Observe that here the two statements to be executed on satisfaction
of the condition have been enclosed within a pair of braces. If a
pair of braces is not used then the C compiler assumes that the
programmer wants only the immediately next statement after the if
to be executed on satisfaction of the condition. In other words we
can say that the default scope of the if statement is the immediately
next statement after it.

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

58 Let Us C

INPUT
cy, yoj

yr_of_ser > 3

bonus = 2500

yes

yr_of_ser = cy - yoj

no

STOP

PRINT
bonus

START

Figure 2.4

The if-else Statement
The if statement by itself will execute a single statement, or a
group of statements, when the expression following if evaluates to
true. It does nothing when the expression evaluates to false. Can
we execute one group of statements if the expression evaluates to
true and another group of statements if the expression evaluates to
false? Of course! This is what is the purpose of the else statement
that is demonstrated in the following example:

Example 2.3: In a company an employee is paid as under:

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 59

If his basic salary is less than Rs. 1500, then HRA = 10% of basic
salary and DA = 90% of basic salary. If his salary is either equal to
or above Rs. 1500, then HRA = Rs. 500 and DA = 98% of basic
salary. If the employee's salary is input through the keyboard write
a program to find his gross salary.

/* Calculation of gross salary */
main()
{
 float bs, gs, da, hra ;

 printf ("Enter basic salary ") ;
 scanf ("%f", &bs) ;

 if (bs < 1500)
 {
 hra = bs * 10 / 100 ;
 da = bs * 90 / 100 ;
 }
 else
 {
 hra = 500 ;
 da = bs * 98 / 100 ;
 }

 gs = bs + hra + da ;
 printf ("gross salary = Rs. %f", gs) ;
}

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

60 Let Us C

Figure 2.5

INPUT
bs

 is
bs < 1500

hra = bs * 10 / 100

gs = bs + hra + da

PRINT
 gs

da = bs * 90 / 100

hra = 500

da = bs * 98 / 100

STOP

START

Figure 2.5

A few points worth noting...

The group of statements after the if upto and not including the
else is called an ‘if block’. Similarly, the statements after the
else form the ‘else block’.

(a)

(b) Notice that the else is written exactly below the if. The
statements in the if block and those in the else block have
been indented to the right. This formatting convention is

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 61

followed throughout the book to enable you to understand the
working of the program better.

(c)

(d)

Had there been only one statement to be executed in the if
block and only one statement in the else block we could have
dropped the pair of braces.

As with the if statement, the default scope of else is also the
statement immediately after the else. To override this default
scope a pair of braces as shown in the above example must be
used.

Nested if-elses

It is perfectly all right if we write an entire if-else construct within
either the body of the if statement or the body of an else statement.
This is called ‘nesting’of ifs. This is shown in the following
program.

/* A quick demo of nested if-else */
main()
{
 int i ;

 printf ("Enter either 1 or 2 ") ;
 scanf ("%d", &i) ;

 if (i == 1)
 printf ("You would go to heaven !") ;
 else
 {
 if (i == 2)
 printf ("Hell was created with you in mind") ;
 else
 printf ("How about mother earth !") ;
 }
}

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

62 Let Us C

Note that the second if-else construct is nested in the first else
statement. If the condition in the first if statement is false, then the
condition in the second if statement is checked. If it is false as
well, then the final else statement is executed.

You can see in the program how each time a if-else construct is
nested within another if-else construct, it is also indented to add
clarity to the program. Inculcate this habit of indentation,
otherwise you would end up writing programs which nobody (you
included) can understand easily at a later date.

In the above program an if-else occurs within the else block of the
first if statement. Similarly, in some other program an if-else may
occur in the if block as well. There is no limit on how deeply the
ifs and the elses can be nested.

Forms of if

The if statement can take any of the following forms:

(a) if (condition)
 do this ;

(b) if (condition)

{
 do this ;
 and this ;
}

(c) if (condition)

 do this ;
else
 do this ;

(d) if (condition)
{
 do this ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 63

 and this ;
}
else
{
 do this ;
 and this ;
}

(e) if (condition)

 do this ;
else
{
 if (condition)
 do this ;
 else
 {
 do this ;
 and this ;
 }
}

(f) if (condition)

{
 if (condition)
 do this ;
 else
 {
 do this ;
 and this ;
 }
}
else
 do this ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

64 Let Us C

Use of Logical Operators
C allows usage of three logical operators, namely, &&, || and !.
These are to be read as ‘AND’ ‘OR’ and ‘NOT’ respectively.

There are several things to note about these logical operators. Most
obviously, two of them are composed of double symbols: || and
&&. Don’t use the single symbol | and &. These single symbols
also have a meaning. They are bitwise operators, which we would
examine in Chapter 14.

The first two operators, && and ||, allow two or more conditions
to be combined in an if statement. Let us see how they are used in
a program. Consider the following example.

Example 2.4: The marks obtained by a student in 5 different
subjects are input through the keyboard. The student gets a
division as per the following rules:

Percentage above or equal to 60 - First division
Percentage between 50 and 59 - Second division
Percentage between 40 and 49 - Third division
Percentage less than 40 - Fail

Write a program to calculate the division obtained by the student.

There are two ways in which we can write a program for this
example. These methods are given below.

/* Method – I */
main()
{
 int m1, m2, m3, m4, m5, per ;

 printf ("Enter marks in five subjects ") ;
 scanf ("%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;
 per = (m1 + m2 + m3 + m4 + m5) / 5 ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 65

 if (per >= 60)
 printf ("First division ") ;
 else
 {
 if (per >= 50)
 printf ("Second division") ;
 else
 {
 if (per >= 40)
 printf ("Third division") ;
 else
 printf ("Fail") ;
 }
 }
}

This is a straight forward program. Observe that the program uses
nested if-elses. This leads to three disadvantages:

(a)

(b)

(c)

As the number of conditions go on increasing the level of
indentation also goes on increasing. As a result the whole
program creeps to the right.
Care needs to be exercised to match the corresponding ifs and
elses.
Care needs to be exercised to match the corresponding pair of
braces.

All these three problems can be eliminated by usage of ‘Logical
operators’. The following program illustrates this.

/* Method – II */
main()
{
 int m1, m2, m3, m4, m5, per ;

 printf ("Enter marks in five subjects ") ;
 scanf ("%d %d %d %d %d", &m1, &m2, &m3, &m4, &m5) ;
 per = (m1 + m2 + m3 + m4 + m5) / 5 ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

66 Let Us C

 if (per >= 60)
 printf ("First division") ;

 if ((per >= 50) && (per < 60))
 printf ("Second division") ;

 if ((per >= 40) && (per < 50))
 printf ("Third division") ;

 if (per < 40)
 printf ("Fail") ;
}

As can be seen from the second if statement, the && operator is
used to combine two conditions. ‘Second division’ gets printed if
both the conditions evaluate to true. If one of the conditions
evaluate to false then the whole thing is treated as false.

Two distinct advantages can be cited in favour of this program:

(a)

(b)

The matching (or do I say mismatching) of the ifs with their
corresponding elses gets avoided, since there are no elses in
this program.
In spite of using several conditions, the program doesn't creep
to the right. In the previous program the statements went on
creeping to the right. This effect becomes more pronounced as
the number of conditions go on increasing. This would make
the task of matching the ifs with their corresponding elses and
matching of opening and closing braces that much more
difficult.

The else if Clause

There is one more way in which we can write program for
Example 2.4. This involves usage of else if blocks as shown
below:

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 67

/* else if ladder demo */
main()
{
 int m1, m2, m3, m4, m5, per ;

 per = (m1+ m2 + m3 + m4+ m5) / per ;

 if (per >= 60)
 printf ("First division") ;
 else if (per >= 50)
 printf ("Second division") ;
 else if (per >= 40)
 printf ("Third division") ;
 else
 printf ("fail") ;
}

You can note that this program reduces the indentation of the
statements. In this case every else is associated with its previous if.
The last else goes to work only if all the conditions fail. Even in
else if ladder the last else is optional.

Note that the else if clause is nothing different. It is just a way of
rearranging the else with the if that follows it. This would be
evident if you look at the following code:

if (i == 2) if (i == 2)
 printf ("With you…") ; printf ("With you…") ;
else else if (j == 2)
{ printf ("…All the time ") ;
 if (j == 2)
 printf ("…All the time") ;
}

Another place where logical operators are useful is when we want
to write programs for complicated logics that ultimately boil down

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

68 Let Us C

to only two answers. For example, consider the following
example:

Example 2.5: A company insures its drivers in the following
cases:

− If the driver is married.
− If the driver is unmarried, male & above 30 years of age.
− If the driver is unmarried, female & above 25 years of age.

In all other cases the driver is not insured. If the marital status, sex
and age of the driver are the inputs, write a program to determine
whether the driver is to be insured or not.

Here after checking a complicated set of instructions the final
output of the program would be one of the two—Either the driver
should be ensured or the driver should not be ensured. As
mentioned above, since these are the only two outcomes this
problem can be solved using logical operators. But before we do
that let us write a program that does not make use of logical
operators.

/* Insurance of driver - without using logical operators */
main()
{
 char sex, ms ;
 int age ;

 printf ("Enter age, sex, marital status ") ;
 scanf ("%d %c %c", &age, &sex, &ms) ;

 if (ms == 'M')
 printf ("Driver is insured") ;
 else
 {
 if (sex == 'M')
 {

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 69

 if (age > 30)
 printf ("Driver is insured") ;
 else
 printf ("Driver is not insured") ;
 }
 else
 {
 if (age > 25)
 printf ("Driver is insured") ;
 else
 printf ("Driver is not insured") ;
 }
 }
}

From the program it is evident that we are required to match
several ifs and elses and several pairs of braces. In a more real-life
situation there would be more conditions to check leading to the
program creeping to the right. Let us now see how to avoid these
problems by using logical operators.

As mentioned above, in this example we expect the answer to be
either ‘Driver is insured’ or ‘Driver is not insured’. If we list down
all those cases in which the driver is insured, then they would be:

(a)
(b)
(c)

Driver is married.
Driver is an unmarried male above 30 years of age.
Driver is an unmarried female above 25 years of age.

Since all these cases lead to the driver being insured, they can be
combined together using && and || as shown in the program
below:

/* Insurance of driver - using logical operators */
main()
{
 char sex, ms ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

70 Let Us C

 int age ;

 printf ("Enter age, sex, marital status ") ;
 scanf ("%d %c %c" &age, &sex, &ms) ;

 if ((ms == 'M') || (ms == 'U' && sex == 'M' && age > 30) ||
 (ms == 'U' && sex == 'F' && age > 25))
 printf ("Driver is insured") ;
 else
 printf ("Driver is not insured") ;
}

In this program it is important to note that:

− The driver will be insured only if one of the conditions
enclosed in parentheses evaluates to true.

− For the second pair of parentheses to evaluate to true, each

condition in the parentheses separated by && must evaluate to
true.

− Even if one of the conditions in the second parentheses

evaluates to false, then the whole of the second parentheses
evaluates to false.

− The last two of the above arguments apply to third pair of

parentheses as well.

Thus we can conclude that the && and || are useful in the
following programming situations:

(a)

(b)

When it is to be tested whether a value falls within a
particular range or not.
When after testing several conditions the outcome is only one
of the two answers (This problem is often called yes/no
problem).

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 71

There can be one more situation other than checking ranges or
yes/no problem where you might find logical operators useful. The
following program demonstrates it.

Example 2.6: Write a program to calculate the salary as per the
following table:

 Gender Years of Service Qualifications Salary

 Male >= 10 Post-Graduate 15000
 >= 10 Graduate 10000
 < 10 Post-Graduate 10000
 < 10 Graduate 7000
 Female >= 10 Post-Graduate 12000
 >= 10 Graduate 9000
 < 10 Post-Graduate 10000
 < 10 Graduate 6000

Figure 2.6

main()
{
 char g ;
 int yos, qual, sal ;

 printf ("Enter Gender, Years of Service and
 Qualifications (0 = G, 1 = PG):") ;
 scanf ("%c%d%d", &g, &yos, &qual) ;

 if (g == 'm' && yos >= 10 && qual == 1)
 sal = 15000 ;
 else if ((g == 'm' && yos >= 10 && qual == 0) ||
 (g == 'm' && yos < 10 && qual == 1))
 sal = 10000 ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

72 Let Us C

 else if (g == 'm' && yos < 10 && qual == 0)
 sal = 7000 ;
 else if (g == 'f' && yos >= 10 && qual == 1)
 sal = 12000 ;
 else if (g == 'f' && yos >= 10 && qual == 0)
 sal = 9000 ;
 else if (g == 'f' && yos < 10 && qual == 1)
 sal = 10000 ;
 else if (g == 'f' && yos < 10 && qual == 0)
 sal = 6000 ;

 printf ("\nSalary of Employee = %d", sal) ;
}

The ! Operator

So far we have used only the logical operators && and ||. The
third logical operator is the NOT operator, written as !. This
operator reverses the result of the expression it operates on. For
example, if the expression evaluates to a non-zero value, then
applying ! operator to it results into a 0. Vice versa, if the
expression evaluates to zero then on applying ! operator to it
makes it 1, a non-zero value. The final result (after applying !) 0 or
1 is considered to be false or true respectively. Here is an example
of the NOT operator applied to a relational expression.

! (y < 10)

This means “not y less than 10”. In other words, if y is less than
10, the expression will be false, since (y < 10) is true. We can
express the same condition as (y >= 10).

The NOT operator is often used to reverse the logical value of a
single variable, as in the expression

if (! flag)

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 73

This is another way of saying

if (flag == 0)

Does the NOT operator sound confusing? Avoid it if you want, as
the same thing can be achieved without using the NOT operator.

Hierarchy of Operators Revisited

Since we have now added the logical operators to the list of
operators we know, it is time to review these operators and their
priorities. Figure 2.7 summarizes the operators we have seen so
far. The higher the position of an operator is in the table, higher is
its priority. (A full-fledged precedence table of operators is given
in Appendix A.)

 Operators Type

 ! Logical NOT
 * / % Arithmetic and modulus
 + - Arithmetic
 < > <= >= Relational
 == != Relational
 && Logical AND
 || Logical OR
 = Assignment

Figure 2.7

A Word of Caution
What will be the output of the following program:

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

74 Let Us C

main()
{
 int i ;

 printf ("Enter value of i ") ;
 scanf ("%d", &i) ;
 if (i = 5)
 printf ("You entered 5") ;
 else
 printf ("You entered something other than 5") ;
}

And here is the output of two runs of this program...

Enter value of i 200
You entered 5
Enter value of i 9999
You entered 5

Surprising? You have entered 200 and 9999, and still you find in
either case the output is ‘You entered 5’. This is because we have
written the condition wrongly. We have used the assignment
operator = instead of the relational operator ==. As a result, the
condition gets reduced to if (5), irrespective of what you supply
as the value of i. And remember that in C ‘truth’ is always non-
zero, whereas ‘falsity’ is always zero. Therefore, if (5) always
evaluates to true and hence the result.

Another common mistake while using the if statement is to write a
semicolon (;) after the condition, as shown below:

main()
{
 int i ;

 printf ("Enter value of i ") ;
 scanf ("%d", &i) ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 75

 if (i == 5) ;
 printf ("You entered 5") ;
}

The ; makes the compiler to interpret the statement as if you have
written it in following manner:

if (i == 5)
 ;
printf ("You entered 5") ;

Here, if the condition evaluates to true the ; (null statement, which
does nothing on execution) gets executed, following which the
printf() gets executed. If the condition fails then straightaway the
printf() gets executed. Thus, irrespective of whether the condition
evaluates to true or false the printf() is bound to get executed.
Remember that the compiler would not point out this as an error,
since as far as the syntax is concerned nothing has gone wrong, but
the logic has certainly gone awry. Moral is, beware of such
pitfalls.

The following figure summarizes the working of all the three
logical operators.

 Operands Results

 x y !x !y x && y x || y
 0 0 1 1 0 0
 0 non-zero 1 0 0 0
 non-zero 0 0 1 0 1
 non-zero non-zero 0 0 1 1

Figure 2.8

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

76 Let Us C

The Conditional Operators
The conditional operators ? and : are sometimes called ternary
operators since they take three arguments. In fact, they form a kind
of foreshortened if-then-else. Their general form is,

expression 1 ? expression 2 : expression 3
What this expression says is: “if expression 1 is true (that is, if its
value is non-zero), then the value returned will be expression 2,
otherwise the value returned will be expression 3”. Let us
understand this with the help of a few examples:

(a) int x, y ;
scanf ("%d", &x) ;
y = (x > 5 ? 3 : 4) ;

This statement will store 3 in y if x is greater than 5,
otherwise it will store 4 in y.

The equivalent if statement will be,

if (x > 5)
 y = 3 ;
else
 y = 4 ;

(b) char a ;
int y ;
scanf ("%c", &a) ;
y = (a >= 65 && a <= 90 ? 1 : 0) ;

Here 1 would be assigned to y if a >=65 && a <=90 evaluates to
true, otherwise 0 would be assigned.

The following points may be noted about the conditional
operators:

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 77

(a)

(b)

(c)

(a)

It’s not necessary that the conditional operators should be
used only in arithmetic statements. This is illustrated in the
following examples:

Ex.: int i ;
 scanf ("%d", &i) ;
 (i == 1 ? printf ("Amit") : printf ("All and sundry")) ;

Ex.: char a = 'z' ;
 printf ("%c" , (a >= 'a' ? a : '!')) ;

The conditional operators can be nested as shown below.

int big, a, b, c ;
big = (a > b ? (a > c ? 3: 4) : (b > c ? 6: 8)) ;

Check out the following conditional expression:

a > b ? g = a : g = b ;

This will give you an error ‘Lvalue Required’. The error can
be overcome by enclosing the statement in the : part within a
pair of parenthesis. This is shown below:

a > b ? g = a : (g = b) ;

In absence of parentheses the compiler believes that b is being
assigned to the result of the expression to the left of second =.
Hence it reports an error.

The limitation of the conditional operators is that after the ? or
after the : only one C statement can occur. In practice rarely is this
the requirement. Therefore, in serious C programming conditional
operators aren’t as frequently used as the if-else.

Summary
There are three ways for taking decisions in a program. First
way is to use the if-else statement, second way is to use the

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

78 Let Us C

conditional operators and third way is to use the switch
statement.

(b)

(c)

(d)

(e)
(f)

(g)

The default scope of the if statement is only the next
statement. So, to execute more than one statement they must
be written in a pair of braces.
An if block need not always be associated with an else block.
However, an else block is always associated with an if
statement.
If the outcome of an if-else ladder is only one of two answers
then the ladder should be replaced either with an else-if clause
or by logical operators.
&& and || are binary operators, whereas, ! is a unary operator.
In C every test expression is evaluated in terms of zero and
non-zero values. A zero value is considered to be false and a
non-zero value is considered to be true.
Assignment statements used with conditional operators must
be enclosed within a pair of parenthesis.

Exercise

if, if-else, Nested if-elses

[A] What would be the output of the following programs:

(a) main()

{
 int a = 300, b, c ;
 if (a >= 400)
 b = 300 ;
 c = 200 ;
 printf ("\n%d %d", b, c) ;
}

(b) main()

{
 int a = 500, b, c ;
 if (a >= 400)

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 79

 b = 300 ;
 c = 200 ;
 printf ("\n%d %d", b, c) ;
}

(c) main()

{
 int x = 10, y = 20 ;
 if (x == y) ;
 printf ("\n%d %d", x, y) ;
}

(d) main()

{
 int x = 3, y = 5 ;
 if (x == 3)
 printf ("\n%d", x) ;
 else ;
 printf ("\n%d", y) ;
}

(e) main()

{
 int x = 3 ;
 float y = 3.0 ;

 if (x == y)
 printf ("\nx and y are equal") ;
 else
 printf ("\nx and y are not equal") ;
}

(f) main()
{
 int x = 3, y, z ;
 y = x = 10 ;
 z = x < 10 ;
 printf ("\nx = %d y = %d z = %d", x, y, z) ;
}

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

80 Let Us C

(g) main()

{
 int k = 35 ;
 printf ("\n%d %d %d", k == 35, k = 50, k > 40) ;
}

(h) main()
{
 int i = 65 ;
 char j = ‘A’ ;
 if (i == j)
 printf (“C is WOW”) ;
 else
 printf("C is a headache") ;
}

(i) main()
{
 int a = 5, b, c ;
 b = a = 15 ;
 c = a < 15 ;
 printf ("\na = %d b = %d c = %d", a, b, c) ;
}

(j) main()
{
 int x = 15 ;
 printf ("\n%d %d %d", x != 15, x = 20, x < 30) ;
}

[B] Point out the errors, if any, in the following programs:

(a) main()

{
 float a = 12.25, b = 12.52 ;
 if (a = b)
 printf ("\na and b are equal") ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 81

}

(b) main()
{
 int j = 10, k = 12 ;
 if (k >= j)
 {
 {
 k = j ;
 j = k ;
 }
 }
}

(c) main()
{
 if ('X' < 'x')
 printf ("\nascii value of X is smaller than that of x") ;
}

(d) main()
{
 int x = 10 ;
 if (x >= 2) then
 printf ("\n%d", x) ;
}

(e) main()
{
 int x = 10 ;
 if x >= 2
 printf ("\n%d", x) ;
}

(f) main()
{
 int x = 10, y = 15 ;
 if (x % 2 = y % 3)

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

82 Let Us C

 printf ("\nCarpathians") ;
}

(g) main()
{
 int x = 30 , y = 40 ;
 if (x == y)
 printf("x is equal to y") ;
 elseif (x > y)
 printf("x is greater than y") ;
 elseif (x < y)
 printf("x is less than y") ;
}

(h) main()
{
 int x = 10 ;
 if (x >= 2) then
 printf ("\n%d", x) ;
}

(i) main()
{
 int a, b ;
 scanf ("%d %d",a, b) ;
 if (a > b) ;
 printf ("This is a game") ;
 else
 printf ("You have to play it") ;
}

[C] Attempt the following:

(a) If cost price and selling price of an item is input through the

keyboard, write a program to determine whether the seller has
made profit or incurred loss. Also determine how much profit
he made or loss he incurred.

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 83

(b)

(c)

(d)

(e)

(f)

(g)

(h)

(i)

(j)

Any integer is input through the keyboard. Write a program to
find out whether it is an odd number or even number.

Any year is input through the keyboard. Write a program to
determine whether the year is a leap year or not.

(Hint: Use the % (modulus) operator)

According to the Gregorian calendar, it was Monday on the
date 01/01/1900. If any year is input through the keyboard
write a program to find out what is the day on 1st January of
this year.

A five-digit number is entered through the keyboard. Write a
program to obtain the reversed number and to determine
whether the original and reversed numbers are equal or not.

If the ages of Ram, Shyam and Ajay are input through the
keyboard, write a program to determine the youngest of the
three.

Write a program to check whether a triangle is valid or not,
when the three angles of the triangle are entered through the
keyboard. A triangle is valid if the sum of all the three angles
is equal to 180 degrees.

Find the absolute value of a number entered through the
keyboard.

Given the length and breadth of a rectangle, write a program to
find whether the area of the rectangle is greater than its
perimeter. For example, the area of the rectangle with length = 5
and breadth = 4 is greater than its perimeter.

Given three points (x1, y1), (x2, y2) and (x3, y3), write a
program to check if all the three points fall on one straight line.

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

84 Let Us C

(k)

(l)

Given the coordinates (x, y) of a center of a circle and it’s radius,
write a program which will determine whether a point lies inside
the circle, on the circle or outside the circle.

(Hint: Use sqrt() and pow() functions)

Given a point (x, y), write a program to find out if it lies on the
x-axis, y-axis or at the origin, viz. (0, 0).

Logical Operators

 If a = 10, b = 12, c = 0, find the values of the expressions in
the following table:

Expression Value

a != 6 && b > 5
a == 9 || b < 3
! (a < 10)
! (a > 5 && c)
5 && c != 8 || !c

1

[D] What would be the output of the following programs:

(a) main()

{
 int i = 4, z = 12 ;
 if (i = 5 || z > 50)
 printf ("\nDean of students affairs") ;
 else
 printf ("\nDosa") ;
}

(b) main()
{
 int i = 4, z = 12 ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 85

 if (i = 5 && z > 5)
 printf ("\nLet us C") ;
 else
 printf ("\nWish C was free !") ;
}

(c) main()
{
 int i = 4, j = -1, k = 0, w, x, y, z ;
 w = i || j || k ;
 x = i && j && k ;
 y = i || j && k ;
 z = i && j || k ;
 printf ("\nw = %d x = %d y = %d z = %d", w, x, y, z) ;
}

(d) main()
{
 int i = 4, j = -1, k = 0, y, z ;
 y = i + 5 && j + 1 || k + 2 ;
 z = i + 5 || j + 1 && k + 2 ;
 printf ("\ny = %d z = %d", y, z) ;
}

(e) main()
{
 int i = -3, j = 3 ;
 if (!i + !j * 1)
 printf ("\nMassaro") ;
 else
 printf ("\nBennarivo") ;
}

(f) main()
{
 int a = 40 ;
 if (a > 40 && a < 45)
 printf ("a is greater than 40 and less than 45") ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

86 Let Us C

 else
 printf ("%d", a) ;
}

(g) main()
{
 int p = 8, q = 20 ;
 if (p == 5 && q > 5)
 printf ("\nWhy not C") ;
 else
 printf ("\nDefinitely C !") ;
}

(h) main()
{
 int i = -1, j = 1, k ,l ;
 k = i && j ;
 l = i || j ;
 printf ("%d %d", I, j) ;
}

(i) main()
{
 int x = 20 , y = 40 , z = 45 ;
 if (x > y && x > z)
 printf("x is big") ;
 else if (y > x && y > z)
 printf("y is big") ;
 else if (z > x && z > y)
 printf("z is big") ;
}

(j) main()
{
 int i = -1, j = 1, k ,l ;
 k = !i && j ;
 l = !i || j ;
 printf ("%d %d", i, j) ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 87

}

(k) main()
{
 int j = 4, k ;
 k = !5 && j ;
 printf ("\nk = %d", k) ;
}

[E] Point out the errors, if any, in the following programs:

(a) /* This program

/* is an example of
/* using Logical operators */
main()
{
 int i = 2, j = 5 ;
 if (i == 2 && j == 5)
 printf ("\nSatisfied at last") ;
}

(b) main()
{
 int code, flag ;
 if (code == 1 & flag == 0)
 printf ("\nThe eagle has landed") ;
}

(c) main()
{
 char spy = 'a', password = 'z' ;
 if (spy == 'a' or password == 'z')
 printf ("\nAll the birds are safe in the nest") ;
}

(d) main()
{

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

88 Let Us C

 int i = 10, j = 20 ;
 if (i = 5) && if (j = 10)
 printf ("\nHave a nice day") ;
}

(a) main()
{
 int x = 10 , y = 20;
 if (x >= 2 and y <=50)
 printf ("\n%d", x) ;
}

(b) main()
{
 int a, b ;
 if (a == 1 & b == 0)
 printf ("\nGod is Great") ;
}

(c) main()
{
 int x = 2;
 if (x == 2 && x != 0) ;
 {
 printf ("\nHi") ;
 printf("\nHello") ;
 }
 else
 printf("Bye") ;
}

(d) main()
{
 int i = 10, j = 10 ;
 if (i && j == 10)
 printf ("\nHave a nice day") ;

 }

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 89

[F] Attempt the following:

(a)

(b)

Any year is entered through the keyboard, write a program to
determine whether the year is leap or not. Use the logical
operators && and ||.

Any character is entered through the keyboard, write a
program to determine whether the character entered is a
capital letter, a small case letter, a digit or a special symbol.

The following table shows the range of ASCII values for
various characters.

Characters ASCII Values

A – Z
a – z
0 – 9
special symbols

65 – 90
97 – 122
48 – 57
 0 - 47, 58 - 64, 91 - 96, 123 - 127

(c) An Insurance company follows following rules to calculate

premium.

(1) If a person’s health is excellent and the person is between
25 and 35 years of age and lives in a city and is a male
then the premium is Rs. 4 per thousand and his policy
amount cannot exceed Rs. 2 lakhs.

(2) If a person satisfies all the above conditions except that
the sex is female then the premium is Rs. 3 per thousand
and her policy amount cannot exceed Rs. 1 lakh.

(3) If a person’s health is poor and the person is between 25
and 35 years of age and lives in a village and is a male

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

90 Let Us C

then the premium is Rs. 6 per thousand and his policy
cannot exceed Rs. 10,000.

(4) In all other cases the person is not insured.

Write a program to output whether the person should be
insured or not, his/her premium rate and maximum amount
for which he/she can be insured.

(d)

(e)

A certain grade of steel is graded according to the following
conditions:

(i) Hardness must be greater than 50
(ii) Carbon content must be less than 0.7
(iii) Tensile strength must be greater than 5600

The grades are as follows:

Grade is 10 if all three conditions are met
Grade is 9 if conditions (i) and (ii) are met
Grade is 8 if conditions (ii) and (iii) are met
Grade is 7 if conditions (i) and (iii) are met
Grade is 6 if only one condition is met
Grade is 5 if none of the conditions are met

Write a program, which will require the user to give values of
hardness, carbon content and tensile strength of the steel
under consideration and output the grade of the steel.

A library charges a fine for every book returned late. For first
5 days the fine is 50 paise, for 6-10 days fine is one rupee and
above 10 days fine is 5 rupees. If you return the book after 30
days your membership will be cancelled. Write a program to
accept the number of days the member is late to return the
book and display the fine or the appropriate message.

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 91

(f)

(g)

(h)

(i)

If the three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is
valid or not. The triangle is valid if the sum of two sides is
greater than the largest of the three sides.

If the three sides of a triangle are entered through the
keyboard, write a program to check whether the triangle is
isosceles, equilateral, scalene or right angled triangle.

In a company, worker efficiency is determined on the basis of
the time required for a worker to complete a particular job. If
the time taken by the worker is between 2 – 3 hours, then the
worker is said to be highly efficient. If the time required by
the worker is between 3 – 4 hours, then the worker is ordered
to improve speed. If the time taken is between 4 – 5 hours, the
worker is given training to improve his speed, and if the time
taken by the worker is more than 5 hours, then the worker has
to leave the company. If the time taken by the worker is input
through the keyboard, find the efficiency of the worker.

A university has the following rules for a student to qualify
for a degree with A as the main subject and B as the
subsidiary subject:
(a) He should get 55 percent or more in A and 45 percent or

more in B.
(b) If he gets than 55 percent in A he should get 55 percent or

more in B. However, he should get at least 45 percent in
A.

(c) If he gets less than 45 percent in B and 65 percent or more
in A he is allowed to reappear in an examination in B to
qualify.

(d) In all other cases he is declared to have failed.

Write a program to receive marks in A and B and Output
whether the student has passed, failed or is allowed to
reappear in B.

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

92 Let Us C

(j) The policy followed by a company to process customer orders

is given by the following rules:

(a) If a customer order is less than or equal to that in stock
and has credit is OK, supply has requirement.

(b) If has credit is not OK do not supply. Send him
intimation.

(c) If has credit is Ok but the item in stock is less than has
order, supply what is in stock. Intimate to him data the
balance will be shipped.

Write a C program to implement the company policy.

Conditional operators

[G] What would be the output of the following programs:

(a) main()

{
 int i = -4, j, num ;
 j = (num < 0 ? 0 : num * num) ;
 printf ("\n%d", j) ;
}

(b) main()
{
 int k, num = 30 ;
 k = (num > 5 ? (num <= 10 ? 100 : 200) : 500) ;
 printf ("\n%d", num) ;
}

(c) main()

{
 int j = 4 ;
 (!j != 1 ? printf ("\nWelcome") : printf ("\nGood Bye")) ;

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 93

}

[H] Point out the errors, if any, in the following programs:

(a) main()

{
 int tag = 0, code = 1 ;
 if (tag == 0)
 (code > 1 ? printf ("\nHello") ? printf ("\nHi")) ;
 else
 printf ("\nHello Hi !!") ;
}

(b) main()
{
 int ji = 65 ;
 printf ("\nji >= 65 ? %d : %c", ji) ;
}

(c) main()
{
 int i = 10, j ;
 i >= 5 ? (j = 10) : (j = 15) ;
 printf ("\n%d %d", i, j) ;
}

(d) main()
{
 int a = 5 , b = 6 ;
 (a == b ? printf("%d",a)) ;
}

(e) main()
{
 int n = 9 ;
 (n == 9 ? printf("You are correct") ; : printf("You are wrong") ;) ;
}

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

94 Let Us C

(f) main()
{
 int kk = 65 ,ll ;
 ll = (kk == 65 : printf ("\n kk is equal to 65") : printf ("\n kk is not
equal to 65")) ;
 printf("%d", ll) ;
}

(g) main()
{
 int x = 10, y = 20 ;
 x == 20 && y != 10 ? printf("True") : printf("False") ;
}

[I] Rewrite the following programs using conditional operators.

(a) main()

{
 int x, min, max ;
 scanf ("\n%d %d", &max, &x) ;
 if (x > max)
 max = x ;
 else
 min = x ;
}

(b) main()
{
 int code ;
 scanf ("%d", &code) ;
 if (code > 1)
 printf ("\nJerusalem") ;
 else
 if (code < 1)
 printf ("\nEddie") ;
 else
 printf ("\nC Brain") ;
}

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

Chapter 2: The Decision Control Structure 95

(c) main()

{
 float sal ;
 printf ("Enter the salary") ;
 scanf ("%f", &sal) ;
 if (sal < 40000 && sal > 25000)
 printf ("Manager") ;
 else
 if (sal < 25000 && sal > 15000)
 printf ("Accountant") ;
 else
 printf ("Clerk") ;
}

[J] Attempt the following:

(a)

(b)

(c)

Using conditional operators determine:

(1) Whether the character entered through the keyboard is a
lower case alphabet or not.

(2) Whether a character entered through the keyboard is a
special symbol or not.

Write a program using conditional operators to determine
whether a year entered through the keyboard is a leap year or
not.

Write a program to find the greatest of the three numbers
entered through the keyboard using conditional operators.

JJM/IT/IT-Portal/2011/PRGJJM/IT/IT-Portal/2011/PRG

